首页 >>2020年02期
2015年中国31个省份与134个国家(地区)综合健康状况的对比分析
作者:苏健婷 张一鸣 王苹 杜婧 韦再华

摘要:

目的  评价中国不同省份综合健康状况,并与其他国家(地区)相比较。方法  从2015年全球疾病负担研究中收集134个国家(地区)和中国31个省份的社会人口学指数、期望寿命和健康期望寿命等数据。采用K-均值聚类法对世界各国(地区)综合健康状况进行分类,采用HemI 1.0.3软件绘制中国不同省份的社会人口学指数、期望寿命和健康期望寿命等指标的分布热点图,采用判别分析评价中国不同省份综合健康状况。结果  134个国家(地区)综合健康状况由好到差分为类别1~8,中国归为类别4。中国各省份的综合健康状况总体表现为东部沿海高、西部内陆低,其中上海、北京归为类别1,浙江、江苏、广东、天津归为类别2,福建、辽宁、山东归为类别3,云南、广西、新疆、贵州归为类别5,青海、西藏归为类别6,其他16个省份归为类别4。结论  中国综合健康状况处于世界中上水平,不同省份存在差异。

关键词:健康状况;聚类分析;横断面研究

Abstract:

Objective  To evaluate comprehensive health status of 31 provinces in China and compare with other countries (regions).Methods  Social-demographic index, life expectancy and healthy life expectancy in 134 countries (regions) and 31 provinces in China were collected from the Global Burden of Disease Study 2015. K-means clustering method was used to classify comprehensive health status of various countries (regions) in the world. HemI 1.0.3 software was applied to draw distribution heat maps of social-demographic index, life expectancy and healthy life expectancy in different provinces of Mainland China. Discriminant analysis was used to evaluate comprehensive health status of different provinces in Mainland China.Results  Comprehensive health status of 134 countries (regions) was grouped into category 1-8 from good to poor, and Mainland China was in the category 4. The comprehensive health status of provinces in Mainland China is better in the east coast and poorer in the west inland, among which Shanghai and Beijing were grouped into the category 1, Zhejiang, Jiangsu, Guangdong and Tianjin into the category 2, Fujian, Liaoning and Shandong into the category 3, Yunnan, Guangxi, Xinjiang and Guizhou into the category 5, Qinghai and Tibet into the category 6, and the rest 16 provinces into the category 4.Conclusion  Comprehensive health status of Mainland China ranked middle to upper level in the world, and health status disparities were observed among different provinces in Mainland China.

Key words: Health status;Cluster analysis;Cross-sectional studies

发表日期:2020/2

引用本文:

图/表:

  • 10.3760/cma.j.issn.0253-9624.2020.02.010.T001:表1 世界各国(地区)综合健康状况的K-均值聚类情况

    10.3760/cma.j.issn.0253-9624.2020.02.010.T001:表1 世界各国(地区)综合健康状况的K-均值聚类情况

  • 10.3760/cma.j.issn.0253-9624.2020.02.010.F001:图1 中国31个省份的健康状况指标热点图

    10.3760/cma.j.issn.0253-9624.2020.02.010.F001:图1 中国31个省份的健康状况指标热点图

  • 10.3760/cma.j.issn.0253-9624.2020.02.010.T002:表2 不同国家与中国31个省份的综合健康状况评价

    10.3760/cma.j.issn.0253-9624.2020.02.010.T002:表2 不同国家与中国31个省份的综合健康状况评价

参考文献:

[1]司佳卉,李立明.卫生与健康:现状及其展望[J].中华预防医学杂志,2018,52(1):3-8. DOI: 10.3760/cma.j.issn.0253-9624.2018.01.002.
[2]GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980—2015: a systematic analysis for the global burden of disease study 2015[J]. Lancet, 2016,388(10053):1459-1544. DOI:10.1016/S0140-6736(16)31012-1.
[3]GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990—2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet, 2016,388(10053):1603-1658. DOI: 10.1016/S0140-6736(16)31460-X.
[4]RobineJM, RitchieK. Healthy life expectancy: evaluation of global indicator of change in population health[J]. BMJ, 1991,302(6774):457-460. DOI: 10.1136/bmj.302.6774.457.
[5]University of Washington. Global health data exchange[EB/OL].[2019-4-12]. http://ghdx.healthdata.org/.
[6]GBD 2016 Causes of Death Collaborators. Global, regional, and nationalage-sex specific mortality for 264 causes of death, 1980—2016: a systematic analysis for the global burden of disease study 2016[J]. Lancet, 2017, 390(10100):1151-1210. DOI:10.1016/S0140-6736(17)32152-9.
[7]孙振球,徐勇勇.医学统计学[M]. 3版.北京:人民卫生出版社,2002.
[8]DengW, WangY, LiuZ, et al. HemI: a toolkit for illustrating heatmaps[J]. PLoS One, 2014,9(11):e111988. DOI: 10.1371/journal.pone.0111988.
[9]BonitaR, MagnussonR, BovetP, et al. Country actions to meet UN commitments on non-communicable diseases: a stepwise approach[J]. Lancet, 2013,381(9866):575-584. DOI: 10.1016/S0140-6736(12)61993-X.
[10]周脉耕,李镒冲,王海东,等. 1990—2015年中国分省期望寿命和健康期望寿命分析[J].中华流行病学杂志,2016,37(11):1439-1443. DOI: 10.3760/cma.j.issn.0254-6450.2016.11.001.
[11]曾新颖,李镒冲,刘世炜,等. 1990—2015年中国四类慢性病早死概率与"健康中国2030"下降目标分析[J].中华预防医学杂志,2017,51(3):209-214. DOI: 10.3760/cma.j.issn.0253-9624.2017.03.004.
[12]李刚,苏健婷,韦再华,等.北京市2010—2015年慢性非传染性疾病早死概率研究[J].中华流行病学杂志,2016,37(9):1268-1271. DOI: 10.3760/cma.j.issn.0254-6450.2016.09.017.
[13]苏健婷,李刚,王苹,等.北京市与世界各国期望寿命对比分析[J].首都公共卫生,2017,11(1):14-16. DOI: CNKI:SUN:SDGW.0.2017-01-005.

用户评论 0条

用户名: 密码: 登陆 注册
 
  • 9
  • 3
  •  4 : 页次:0/0页 共0条记录 5条/每页
    关于我们 | 专家风采 | 会员注册 | 继续教育
    地 址:北京市西城区东河沿街69号正弘大厦511室 邮 编:100052
    电话:010-51322302
    版权所有 中华医学会及中华预防医学杂志编辑部
    京ICP备 07035254 号