首页 >>2020年02期
2017年中国即食食品中单核细胞增生李斯特菌的分子流行病学特征
作者:李薇薇 郭云昌 占利 马国柱 杨祖顺 刘成伟 申志新 王迪 张晓嫒 宋晓红 余波 贾华云 李秀桂 张秀丽 杨小蓉 杨大进 裴晓燕

摘要:

目的  分析我国即食食品中单核细胞增生李斯特菌的分子流行病学特征。方法  将2017年食品安全风险监测即食食品中分离的单核细胞增生李斯特菌作为研究菌株,共239株,分离自27个省份。对菌株进行全基因组测序,分析其谱系、克隆群(CC)、序列分型(ST)和血清群;通过VFDB和BIGSdb-Lm数据库获得其毒力基因分布;采用微量肉汤稀释法检测菌株对8种抗生素的敏感性;采用核心基因组多位点序列分型方法(cgMLST)进行分子分型。结果  实验菌株分属在3个谱系,以谱系Ⅱ为主,共155株(64.9%);血清群以Ⅱa为主,共133株(55.6%);分为23个CC型,以及1个未分CC型的ST619,其中CC8、CC101和CC87为优势CC型,共占49.4%(118株);仅4.6%(11株)的菌株携带耐药基因,主要为甲氧苄啶耐药基因(7株,2.9%)。所有菌株均携带单核细胞增生李斯特菌毒力岛(LIPI)1,携带LIPI-3和LIPI-4的菌株分别占13.8%(33株)和14.2%(34株),ST619同时携带LIPI-3和LIPI-4。51.5%(123株)的菌株携带应激生存岛(SSI)1,10株CC121菌株均携带SSI-2。核心基因组多位点序列分型方法能将不同谱系、血清群和CC型的菌株明显分开,共分为24个亚群,与CC型基本保持一致。结论  我国即食食品中菌株以Ⅱa型血清群为主,CC8、CC101和CC87为优势CC型,其中,CC87为流行性高毒菌株。基于全基因组测序的分型方法cgMLST分辨力高,可用于我国食源性疾病的监测和暴发识别。

关键词:利斯特菌,单核细胞增生;分子流行病学;全基因组测序;核心基因组多位点序列分型;即食食品

Abstract:

Objective  To analyze the molecular characteristics of Listeria monocytogenes strains from ready-to eat food in China.Methods  A total of 239 Listeria monocytogenes strains isolated from ready-to-eat food in 2017, all strains underwent whole-genome sequencing (WGS) , and comparisons uncovered population structure derived from lineages, clonal complex, serogroups, antimicrobial susceptibility and virulence, which were inferred in silico from the WGS data. Core genome multilocus sequence typing was used to subtype isolates.Results  All strains were categorized into three different lineages, lineage Ⅱ was the predominant types in food, and IIa was the main serogroups. CC8, CC101 and CC87 were the first three prevalent CCs among 23 detected CCs, accounting for 49.4%. Only 4.6% (11 isolates) of tested strains harbored antibiotic resistance genes, which were mostly trimethoprim genes (7 isolates, 2.9%). All strains were positive for LIPI-1, and only a part of strains harbored LIPI-3 and LIPI-4, accounting for 13.8% (33 isolates) and 14.2% (34 isolates), respectively. ST619 carried both LIPI-3 and LIPI-4. 51.5% (123 isolates) of strains carried SSI-1, and all CC121 strains harbored SSI-2. Different lineages, serogroups and CCs can be separated obviously through cgMLST analysis, and 24 sublineages were highly concordant with CCs.Conclusion  Ⅱa was the main serogroups in ready-to-eat food isolates in China; CC8, CC101 and CC87 were the prevalent CCs, and CC87 isolates was hypervirulent isolates, cgMLST method can be adopted for prospective foodborne disease surveillance and outbreaks detection.

Key words: Listeria monocytogenes;Molecular epidemiology;Genome-wide sequencing;Core genome multilocus sequence typing;Ready-to-eat food

发表日期:2020/2

引用本文:

图/表:

  • 10.3760/cma.j.issn.0253-9624.2020.02.012.T001:表1 2017年中国即食食品中分离的239株单核细胞增生李斯特菌食品类别分布情况

    10.3760/cma.j.issn.0253-9624.2020.02.012.T001:表1 2017年中国即食食品中分离的239株单核细胞增生李斯特菌食品类别分布情况

  • 10.3760/cma.j.issn.0253-9624.2020.02.012.F001:图1 2017年中国即食食品中分离的239株单核细胞增生李斯特菌谱系、血清和CC型生成树

    10.3760/cma.j.issn.0253-9624.2020.02.012.F001:图1 2017年中国即食食品中分离的239株单核细胞增生李斯特菌谱系、血清和CC型生成树

  • 10.3760/cma.j.issn.0253-9624.2020.02.012.T002:表2 2017年中国即食食品中分离的239株单核细胞增生李斯特菌谱系、血清和CC型分布情况

    10.3760/cma.j.issn.0253-9624.2020.02.012.T002:表2 2017年中国即食食品中分离的239株单核细胞增生李斯特菌谱系、血清和CC型分布情况

  • 10.3760/cma.j.issn.0253-9624.2020.02.012.F002:图2 2017年中国即食食品中分离的32株亚群87单核细胞增生李斯特菌核心基因组多位点序列分型聚类图

    10.3760/cma.j.issn.0253-9624.2020.02.012.F002:图2 2017年中国即食食品中分离的32株亚群87单核细胞增生李斯特菌核心基因组多位点序列分型聚类图

参考文献:

[1]ScallanE, HoekstraRM, GriffinPM, et al. Foodborne illness acquired in the United States—major pathogens[J]. Emerg Infect Dis,2011,17(1):7-15. DOI:10.3201/eid1701.P11101.
[2]MotarjemiY, AdamsM. Emerging Foodborne Pathogens[M]. Abington: Woodhead Publishing Limited, 2006.
[3]DoganayM. Listeriosis: clinical presentation[J]. FEMS Immunol Med Microbiol, 2003,35(3):173-175. DOI: 10.1016/S0928-8244(02)00467-4.
[4]DoumithM, BuchrieserC, GlaserP, et al. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR[J]. J Clin Microbiol, 2004,42(8):3819-3822. DOI: 10.1128/JCM.42.8.3819-3822.2004.
[5]ZankariE, HasmanH, CosentinoS, et al. Identification of acquired antimicrobial resistance genes[J]. J Antimicrob Chemother, 2012,67(11):2640-2644. DOI: 10.1093/jac/dks261.
[6]MouraA, CriscuoloA, PouseeleH, et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes[J]. Nat Microbiol, 2016,2:16185. DOI: 10.1038/nmicrobiol.2016.185.
[7]LiW, BaiL, FuP, et al. The Epidemiology of Listeria monocytogenes in China[J]. Foodborne Pathog Dis, 2018,15(8):459-466. DOI: 10.1089/fpd.2017.2409.
[8]LuberP. The Codex Alimentarius guidelines on the application of general principles of food hygiene to the control of Listeria monocytogenes in ready-to-eat foods [EB/OL]. [2019-08-14].https://sci-hub.tw/10.1016/j.foodcont.2010.07.013.
[9]中华人民共和国国家卫生和计划生育委员会. GB 29921-2013食品安全国家标准食品中致病菌限量[S].北京:中国标准出版社,2013.
[10]OrsiRH, den BakkerHC, WiedmannM. Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics[J]. Int J Med Microbiol, 2011,301(2):79-96. DOI: 10.1016/j.ijmm.2010.05.002.
[11]MorvanA, MoubareckC, LeclercqA, et al. Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France[J]. Antimicrob Agents Chemother, 2010,54(6):2728-2731. DOI: 10.1128/AAC.01557-09.
[12]BertschD, UrutyA, AndereggJ, et al. Tn6198, a novel transposon containing the trimethoprim resistance gene dfrG embedded into a Tn916 element in Listeria monocytogenes[J]. J Antimicrob Chemother, 2013,68(5):986-991. DOI: 10.1093/jac/dks531.
[13]ClaytonEM, HillC, CotterPD, et al. Real-time PCR assay to differentiate Listeriolysin S-positive and -negative strains of Listeria monocytogenes[J]. Appl Environ Microbiol, 2011,77(1):163-171. DOI: 10.1128/AEM.01673-10.
[14]CotterPD, DraperLA, LawtonEM, et al. Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes[J]. PLoS Pathog, 2008,4(9):e1000144. DOI: 10.1371/journal.ppat.1000144.
[15]MauryMM, TsaiYH, CharlierC, et al. Erratum: uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity[J]. Nat Genet, 2017,49(6):970. DOI: 10.1038/ng0617-970d.
[16]RyanS, BegleyM, HillC, et al. A five-gene stress survival islet (SSI-1) that contributes to the growth of Listeria monocytogenes in suboptimal conditions[J]. J Appl Microbiol, 2010,109(3):984-995. DOI: 10.1111/j.1365-2672.2010.04726.x.
[17]HarterE, WagnerEM, ZaiserA, et al. Stress survival islet 2, predominantly present in Listeria monocytogenes strains of sequence type 121, is involved in the alkaline and oxidative stress responses[J]. Appl Environ Microbiol, 2017,83(16). DOI: 10.1128/AEM.00827-17.
[18]RuppitschW, PietzkaA, PriorK, et al. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes[J]. J Clin Microbiol, 2015,53(9):2869-2876. DOI: 10.1128/JCM.01193-15.
[19]闫军,遇晓杰,裴晓燕,等. 2016年黑龙江省17家餐饮单位单核细胞增生李斯特菌污染及病原学分析[J].中华预防医学杂志,2019,53(3):298-302. DOI: 10.3760/cma.j.issn.0253-9624.2019.03.017.

用户评论 0条

用户名: 密码: 登陆 注册
 
  • 9
  • 3
  •  4 : 页次:0/0页 共0条记录 5条/每页
    关于我们 | 专家风采 | 会员注册 | 继续教育
    地 址:北京市西城区东河沿街69号正弘大厦511室 邮 编:100052
    电话:010-51322302
    版权所有 中华医学会及中华预防医学杂志编辑部
    京ICP备 07035254 号