首页 >>2020年02期
毒作用模式和有害结局路径的关系及其在风险评估中的应用
作者:黄河海 肖勇梅

摘要:

风险评估方法是保障人类健康和环境安全的必要技术手段。基于动物实验获取毒性数据的传统风险评估,由于动物实验通量低、周期长、成本高和高剂量外推至人类暴露剂量的不确定性等问题,难以满足大量化学品亟需开展风险评估的需求。毒作用模式(MOA)和有害结局路径(AOP)风险评估框架的提出为我们开发新型、高效的评价方法指明了方向。本综述介绍了MOA和AOP的基本概念、内容以及两者之间的关系,并以丙烯酰胺(AA)为例,简述MOA/AOP框架在化学物风险评估中的具体应用,以期为更好运用MOA/AOP框架进行化学物风险评估提供理论指导。

关键词:危险性评估;毒性作用;有害结局路径

Abstract:

Risk assessment is a necessary technical means to protect human health and environmental safety. Traditional risk assessment based on toxicity data obtained from animal experiments was difficult to meet the need for risk assessment for a large number of chemicals due to the low throughput, long cycle, high cost and uncertainty of extrapolation to human exposure dose. The proposed risk assessment frameworks, the model of action (MOA) and the adverse outcome pathway (AOP), pointed the way for us to develop new and efficient evaluation methods. In this review, the basic concepts and contents of MOA and AOP, as well as the relationship between them, were introduced. Taking acrylamide (AA) as an example, this review briefly described the application of MOA/AOP framework in chemical risk assessment, so as to provide theoretical guidance for better application of MOA/AOP framework in chemical risk assessment.

Key words: Risk assessment;Toxic actions;Adverse outcome pathway

发表日期:2020/2

引用本文:

图/表:

  • 10.3760/cma.j.issn.0253-9624.2020.02.020.F001:图1 运用有害结局路径风险评估一般框架

    10.3760/cma.j.issn.0253-9624.2020.02.020.F001:图1 运用有害结局路径风险评估一般框架

  • 10.3760/cma.j.issn.0253-9624.2020.02.020.F002:图2 丙烯酰胺毒作用模式/有害结局路径的风险评估流程

    10.3760/cma.j.issn.0253-9624.2020.02.020.F002:图2 丙烯酰胺毒作用模式/有害结局路径的风险评估流程

  • 10.3760/cma.j.issn.0253-9624.2020.02.020.T001:表1 丙烯酰胺毒作用模式/有害结局路径评估的具体模块信息及主要证据支持

    10.3760/cma.j.issn.0253-9624.2020.02.020.T001:表1 丙烯酰胺毒作用模式/有害结局路径评估的具体模块信息及主要证据支持

参考文献:

[1]United States Environmental Protection Agency. Fact Sheet: EPA′s Guidelines for Carcinogen Risk Assessment [EB/OL].[2019-02-12].https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=119032.
[2]SeedJ, CarneyE, CorleyR, et al. Overview: Using mode of action and life stage information to evaluate the human relevance of animal toxicity data[J]. Crit Rev Toxicol, 2005,35(8-9):664-672. DOI: 10.1080/10408440591007133.
[3]BoobisA, DoeJ, Heinrich-HirschB, et al. IPCS framework for analyzing the relevance of a noncancer mode of action for humans[J]. Crit Rev Toxicol, 2008,38(2):87-96. DOI: 10.1080/10408440701749421.
[4]JulienE, BoobisA, OlinS. The Key Events Dose-Response Framework: a cross-disciplinary mode-of-action based approach to examining dose-response and thresholds[J]. Crit Rev Food Sci Nutr, 2009,49(8):682-689. DOI: 10.1080/10408390903110692.
[5]National Research Council of the U.S. National Academy of Science. Toxicity testing in the 21st century: a vision and a strategy [EB/OL].[2019-02-12]. http://refhub.elsevier.com/S0300-483X(13)00230-8/sbref0140.
[6]Sonich-MullinC, FielderR, WiltseJ, et al. IPCS conceptual framework for evaluating a mode of action for chemical carcinogenesis[J]. Regul Toxicol Pharmacol, 2001,34(2):146-152. DOI: 10.1006/rtph.2001.1493.
[7]AnkleyG, BennettR, EricksonR, et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment[J]. Environ Toxicol Chem, 2010,29(3):730-741. DOI: 10.1002/etc.34.
[8]VinkenM. The adverse outcome pathway concept: a pragmatic tool in toxicology[J]. Toxicology, 2013,312:158-165. DOI: 10.1016/j.tox.2013.08.011.
[9]EdwardsS, TanY, VilleneuveD, et al. Adverse outcome pathways-organizing toxicological information to improve decision making[J]. J Pharmacol Exp Ther, 2016,356(1):170-181. DOI: 10.1124/jpet.115.228239.
[10]MeekM, BoobisA, CoteI, et al. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis[J]. J Appl Toxicol, 2014,34(1):1-18. DOI: 10.1002/jat.2949.
[11]VilleneuveD, CrumpD, Garcia-ReyeroN, et al. Adverse outcome pathway (AOP) development I: strategies and principles[J]. Toxicol Sci, 2014,142(2):312-320. DOI: 10.1093/toxsci/kfu199.
[12]Bal-PriceA, MeekM. Adverse outcome pathways: Application to enhance mechanistic understanding of neurotoxicity[J]. Pharmacol Ther, 2017,179:84-95. DOI: 10.1016/j.pharmthera.2017.05.006.
[13]WittwehrC, AladjovH, AnkleyG, et al. How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology[J]. Toxicol Sci, 2017,155(2):326-336. DOI: 10.1093/toxsci/kfw207.
[14]Organization for Economic Co-operation and Development. Revised Guidance Document on Developing and Assessing Adverse Outcome Pathways[EB/OL]. [2019-02-12].https://www.oecd-ilibrary.org/docserver/5jlv1m9d1g32-en.pdf?expires=1557074742&id=id&accname=guest&checksum=A2C0152384203DADFEC8BABD59218FCA.
[15]Organization for Economic Co-operation and Development. Proposal for a template and guidance on developing and assessing the completeness of adverse outcome pathways. [EB/OL]. [2019-02-12]. http://refhub.elsevier.com/S0300-483X(13)00230-8/sbref0145.
[16]周宗灿.毒作用模式和有害结局通路[J].毒理学杂志, 2014(1):1-2.
[17]王艳华,段化伟.有害结局路径策略在毒理学研究中的发展和应用[J].中华预防医学杂志, 2015,49(12):1115-1118. DOI: 10.3760/cma.j.issn.0253-9624.2015.12.019.
[18]HinesA, StaffF, WiddowsJ, et al. Discovery of Metabolic Signatures for Predicting Whole Organism Toxicology[J]. Toxicol Sci, 2010,115(2):369-378. DOI: 10.1093/toxsci/kfq004.
[19]EgeghyP, SheldonL, IsaacsK, et al. Computational Exposure Science: An Emerging Discipline to Support 21st-Century Risk Assessment[J]. Environ Health Perspect, 2016,124(6):697-702. DOI: 10.1289/ehp.1509748.
[20]ChushakY, ShowsH, GearhartJ, et al. In silico identification of protein targets for chemical neurotoxins using ToxCast in vitro data and read-across within the QSAR toolbox[J]. Toxicol Res (Camb), 2018,7(3):423-431. DOI: 10.1039/c7tx00268h.
[21]HillAB. The environment and disease: association or causation?[J]. Proc R Soc Med, 58(5): 295-300.
[22]Organization for Economic Co-operation and Development. Users′ handbook supplement to the guidance document for developing and assessing AOPs [EB/OL]. [2019-02-12]. https://www.oecd-ilibrary.org/docserver/5jlv1m9d1g32-en.pdf?expires=1557076515&id=id&accname=guest&checksum=B1FD2B43E7029404C3525CDE6857D0ED.
[23]Organization for Economic Co-operation and Development. The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins Part 1 and Part 2 [EB/OL]. [2019-02-12]. https://www.oecd-ilibrary.org/docserver/9789264221444-en.pdf?expires=1544154523&id=id&accname=guest&checksum=B7A9E75CA5AEB652104A33EC7DB13C71.
[24]Organization for Economic Co-operation and Development. Adverse Outcome Pathway on Protein Alkylation Leading to Liver Fibrosis [EB/OL]. [2019-02-12]. https://www.oecd-ilibrary.org/docserver/5jlsvwl6g7r5-en.pdf?expires=1544366533&id=id&accname=guest&checksum=61DF53CC05A7AEA95DB6AB3D6A0DE4F3.
[25]Organization for Economic Co-operation and Development. Adverse Outcome Pathway on Aromatase Inhibition Leading to Reproductive Dysfunction (in Fish) [EB/OL]. [2019-02-12]. https://www.oecd-ilibrary.org/docserver/5jlsv05mx433-en.pdf?expires=1544366761&id=id&accname=guest&checksum=8F59E91BC257508E5931D8FFA56D736A.
[26]Organization for Economic Co-operation and Development. Adverse Outcome Pathway on binding of agonists to ionotropic glutamate receptors in adult brain leading to excitotoxicity that mediates neuronal cell death, contributing to learning and memory impairment [EB/OL]. [2019-02-12]. https://www.oecd-ilibrary.org/docserver/5jlr8vqgm630-en.pdf?expires=1544366651&id=id&accname=guest&checksum=F885EB0630F18C3B92235740515FF8EB.
[27]MeekM. Recent developments in frameworks to consider human relevance of hypothesized modes of action for tumours in animals[J]. Environ Mol Mutagen, 2008,49(2):110-116. DOI: 10.1002/em.20369.
[28]MeekM, PalermoC, BachmanA, et al. Mode of action human relevance (species concordance) framework: Evolution of the Bradford Hill considerations and comparative analysis of weight of evidence[J]. J Appl Toxicol, 2014,34(6):595-606. DOI: 10.1002/jat.2984.
[29]TollefsenK, ScholzS, CroninM, et al. Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA)[J]. Regul Toxicol Pharmacol, 2014,70(3):629-640. DOI: 10.1016/j.yrtph.2014.09.009.
[30]Organization for Economic Co-operation and Development. Report of the Workshop on a Framework for the Development and Use Of Integrated Approaches to Testing and Assessment[EB/OL]. [2019-02-12]. https://www.oecd-ilibrary.org/docserver/9789264274747-en.pdf?expires=1557076826&id=id&accname=guest&checksum=F599C930EC9AD8766416203E1FAE3B1B.
[31]ThomasR, PhilbertM, AuerbachS, et al. Incorporating new technologies into toxicity testing and risk assessment: moving from 21st century vision to a data-driven framework[J]. Toxicol Sci, 2013,136(1):4-18. DOI: 10.1093/toxsci/kft178.
[32]PerkinsE, AntczakP, BurgoonL, et al. Adverse Outcome Pathways for Regulatory Applications: Examination of Four Case Studies With Different Degrees of Completeness and Scientific Confidence[J]. Toxicol Sci, 2015,148(1):14-25. DOI: 10.1093/toxsci/kfv181.
[33]BurdenN, SewellF, AndersenM, et al. Adverse Outcome Pathways can drive non-animal approaches for safety assessment[J]. J Appl Toxicol, 2015,35(9):971-975. DOI: 10.1002/jat.3165.
[34]张波,杨萍,陈雯.基于毒性通路的毒理学危险度评价方法[J].中华预防医学杂志, 2010,44(7):587-590. DOI: 10.3760/cma.j.issn.0253-9624.2010.07.004.
[35]ChepelevN, GagnéR, MaynorT, et al. Transcriptional profiling of male F344 rats suggests the involvement of calcium signaling in the mode of action of acrylamide-induced thyroid cancer[J]. Food Chem Toxicol, 2017,107(Pt A):186-200. DOI: 10.1016/j.fct.2017.06.019.
[36]MaronpotR, ThoolenR, HansenB. Two-year carcinogenicity study of acrylamide in Wistar Han rats with in utero exposure[J]. Exp Toxicol Pathol, 2015,67(2):189-195. DOI: 10.1016/j.etp.2014.11.009.
[37]PennisiM, MalaguarneraG, PuglisiV, et al. Neurotoxicity of Acrylamide in Exposed Workers[J]. Int J Environ Res Public Health, 2013,10(9):3843-3854. DOI: 10.3390/ijerph10093843.
[38]OkamotoS, NakamuraT, CieplakP, et al. S-Nitrosylation-Mediated Redox Transcriptional Switch Modulates Neurogenesis and Neuronal Cell Death[J]. Cell Rep, 2014,8(1):217-228. DOI: 10.1016/j.celrep.2014.06.005.
[39]HothM. CRAC channels, calcium, and cancer in light of the driver and passenger concept[J]. Biochim Biophys Acta, 2016,1863(6Pt B):1408-1417. DOI: 10.1016/j.bbamcr.2015.12.009.
[40]李子琪,郑唯韡,刘颖,等.食品用纳米材料的管理、安全性评价现状与展望[J].中华预防医学杂志, 2018,52(10):1082-1088. DOI: 10.3760/cma.j.issn.0253-9624.2018.10.023.
[41]张爱华,王大朋.重视环境砷污染健康风险评估研究[J].中华预防医学杂志, 2018,52(10):969-972. DOI: 10.3760/cma.j.issn.0253-9624.2018.10.001.

用户评论 0条

用户名: 密码: 登陆 注册
 
  • 9
  • 3
  •  4 : 页次:0/0页 共0条记录 5条/每页
    关于我们 | 专家风采 | 会员注册 | 继续教育
    地 址:北京市西城区东河沿街69号正弘大厦511室 邮 编:100052
    电话:010-51322302
    版权所有 中华医学会及中华预防医学杂志编辑部
    京ICP备 07035254 号