2010年浙江省居民血脂异常与不同亚型高血压的关联研究

陆凤叶真丛黎明丁钢强张新卫胡如英张洁王浩何青芳
王立新苏丹婷赵鸣龚巍巍肖媛媛梁明斌潘劲方乐
费方荣俞敏

【摘要】目的了解浙江省居民不同亚型高血压患病率及其与血脂异常的关系。方法于2010年6—10月，采用四阶段分层整群抽样方法，选取浙江省15个县(市、区)751个快调家庭中年龄≥18周岁的常住人口作为调查对象，共19113名。应用自行设计的调查问卷，调查研究对象一般情况、行为方式和生活方式，同时，检测其身高、体重、血压及血脂等指标。结果19113名调查对象中完成问卷调查，体检和血脂异常等项目调查，并剔除不符合标准者，最终纳入14731名。调查对象单纯收缩期高血压(ISH)、单纯舒张期高血压(IDH)和收缩期舒张期高血压(SDH)组患病率分别为7.16%(1055/14731)、4.60%(677/14731)、7.09%(1045/14731)，标准化率分别为5.46%、4.41%、5.75%。血清正常组中TC正常，边缘升高，升高的人数分别为10571(88.43%)、1173(9.81%)、210(1.76%)名；HDL-C正常与降低的人数分别为6885(57.60%)、5069(42.40%)名；TG正常，边缘升高，升高的人数分别为9952(79.91%)、1213(10.15%)、1189(9.59%)名。ISH组中TC正常，边缘升高，升高的人数分别为8251(62.97%)、1188(17.82%)、41(3.89%)名；HDL-C正常与降低的人数分别为666(63.13%)、389(36.87%)名；TG正常，边缘升高，升高的人数分别为737(69.56%)、150(14.22%)、168(15.92%)名。多因素分析显示：TG边缘升高和TG升高可增加ISH的患病风险[OR(95%CI)值分别为1.43(1.16~1.76)、1.65(1.34~2.03)]。IDH组中TC正常，边缘升高，升高的人数分别为556(82.13%)、99(14.62%)、22(3.25%)名；HDL-C正常与降低的人数分别为335(49.48%)、342(50.52%)名；TG正常，边缘升高，升高的人数分别为40(59.38%)、107(15.81%)、168(24.82%)名；多因素分析显示：TG边缘升高和TG升高可增加IDH的患病风险[OR(95%CI)值分别为1.57(1.24~1.98)、2.18(1.76~2.70)]。SDH组中TC正常，边缘升高，升高的人数分别为817(78.18%)、193(18.47%)、35(3.35%)名；HDL-C正常与降低的人数分别为599(57.32%)、446(42.68%)名；TG正常，边缘升高，升高的人数分别为675(64.59%)、164(15.69%)、206(19.71%)名；多因素分析显示：TC边缘升高，TG边缘升高和TG升高可增加SDH的患病风险[OR(95%CI)值分别为1.38(1.14~1.67)、1.43(1.18~1.75)、1.73(1.43~2.10)]。结论血脂异常是浙江省居民不同亚型高血压患病的影响因素，尤其是TG，应加强人群中血脂异常的筛查，降低心血管疾病危险性。

【关键词】高血压；血脂异常；患病率

Association between dyslipidemia and different subtypes of hypertension among Zhejiang population in 2010

LUC. Fang, YE Zhen, CONG Li-ming, DING Gang-qiang, ZHANG Xin-wei, HU Ru-ying, ZHANG Jie, WANG Hao, HE Qing-fang, WANG Li-xin, SU Dan-ting, ZHAO Ming, GONG Wei-xiao, YAO Yuan-yuan, LIANG Ming-hui, PAN Xin, FANG Le, FEN Fang-long, YU Min. Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China

Corresponding author: YU Min, Email: myu@cdc.zj.cn

【Abstract】Objective To explore the association between dyslipidemia and different subtypes of hypertension among Zhejiang population in 2010.

基金项目：浙江省科技厅2011年度重大技术专项(2011C13032-1)

作者单位：310051 杭州，浙江省疾病预防控制中心

通信作者：俞敏，Email：myu@cdc.zj.cn

Association between dyslipidemia and different subtypes of hypertension among Zhejiang population in 2010

LUC. Fang, YE Zhen, CONG Li-ming, DING Gang-qiang, ZHANG Xin-wei, HU Ru-ying, ZHANG Jie, WANG Hao, HE Qing-fang, WANG Li-xin, SU Dan-ting, ZHAO Ming, GONG Wei-xiao, YAO Yuan-yuan, LIANG Ming-hui, PAN Xin, FANG Le, FEN Fang-long, YU Min. Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China

Corresponding author: YU Min, Email: myu@cdc.zj.cn

【Abstract】Objective To explore the association between dyslipidemia and different subtypes of hypertension among Zhejiang population in 2010.
hypertension among Zhejiang population. Methods From June to October in 2010, 19,113 local residents aged ≥18 years old were selected among 7571 families from fifteen counties in Zhejiang by four stage stratified-random sampling method. A self-designed questionnaire was adopted to collect information on demographic characteristics, physical activity and life style. At the same time, physical examinations including height, weight, blood pressure and blood lipids were carried out. Results A total of 19,113 participants completed the interviews, physical examinations and collected the blood samples. Excluding those who did not meet the criteria, 14,731 were finally enrolled in the study. The prevalence rates of isolated systolic hypertension (ISH), isolated diastolic hypertension (IDH), systolic and diastolic hypertension (SDH) were 7.16% (1055/14,731, standardized rate; 5.46%), 4.60% (677/14,731, standardized rate; 4.41%), 7.09% (1045/14,731, standardized rate; 5.75%), respectively. Among normal blood pressure group, subjects with normal TC, high TC and abnormal TC were separately 10,571 (88.43%), 1173 (9.81%) and 210 (1.76%); subjects with normal HDL-C and low HDL-C were separately 6885 (57.60%) and 5069 (42.40%); subjects with normal TG, high TG, abnormal TG were separately 9952 (79.91%), 1213 (10.15%) and 1189 (9.95%). In ISH group, subjects with normal TC, high TC and abnormal TC were separately 826 (78.29%), 188 (17.82%) and 41 (3.89%); subjects with normal HDL-C and low HDL-C were separately 666 (63.13%) and 389 (36.87%); subjects with normal TG, high TG and abnormal TG were separately 737 (69.86%), 150 (14.22%) and 168 (15.92%). Multi factor analysis showed that high TG and abnormal TG were associated with ISH (OR (95% CI); 1.43 (1.16 – 1.76), 1.64 (1.34 – 2.03) respectively). Among IDH group, subjects with normal TC, high TC, abnormal TC were separately 556 (82.13%), 99 (14.62%) and 22 (3.25%); subjects with normal HDL-C, low HDL-C were separately 335 (49.48%) and 342 (50.52%); subjects with normal TG, high TG, and abnormal TG were separately 402 (59.38%), 107 (15.81%) and 168 (24.82%). The multi factor analysis showed that high TG and abnormal TG could increase the risk of IDH (OR (95% CI); 1.57 (1.24 – 1.98), 2.18 (1.76 – 2.70) respectively). Among SDH group, subjects with normal TG, high TC and abnormal TG were 817 (78.18%), 193 (18.47%) and 35 (3.35%); subjects with normal HDL-C and abnormal HDL-C were separately 599 (57.32%) and 446 (42.68%); subjects with normal TG, high TG, abnormal TG were separately 675 (64.59%), 164 (15.69%) and 260 (19.71%). The multi factor analysis showed that high TG, high TC and abnormal TG were also associated with the increased risk of SDH (OR (95% CI); 1.38 (1.14 – 1.67), 1.43 (1.18 – 1.75), 1.75 (1.43 – 2.10) respectively). Conclusion Dyslipidemia is an important factor of different subtypes of hypertension among Zhejiang population, especially triglycerides. Dyslipidemia screening should be strengthened to reduce the risk of cardiovascular diseases.

【Key words】Hypertension; Dyslipidemias; Prevalence

高血压是常见的慢性病，也是心脑血管疾病的
主要危险因素，已成为影响中国居民健康的主要公共卫
生问题[13]。流行病学资料和临床试验结果均示
，不同亚型的高血压在人群中的分布不同，对心
脑血管疾病发病风险的影响也不相同[3]。因此，越
来越多的研究者认为对不同亚型的高血压需要采取
不同的预防和治疗措施。不同亚型高血压是否具有
相同的影响因素是对其采取控制策略的决定因素，
同样是决定其控制效果的关键因素。为了解浙江省
居民不同亚型高血压的流行情况及其与血脂异常的
关系，笔者对2010年6—10月开展的全省成年居民
代谢综合征相关疾病调查的数据进行分析，现将结
果报道如下。

对象与方法

1. 对象：于2010年6—10月，采用四阶段分层
整群抽样方法，按人口密度、生育率、非农业人口比
例、人均国内生产总值、文盲率、粗死亡率和大于
60岁人口构成等7个指标进行聚类，将浙江省
90个县（市、区）分成2类城市和3类农村，共5类
地区。利用系统抽样的方法，第一阶段从5类地区
中分别抽取3个县（市、区）；第二阶段从上述15个
县（市、区）中分别抽取4个街道（乡镇）；第三阶段
从各街道（乡镇）中分别抽取3个村（居委会）；第
四阶段采用整群抽样，在每个村（居委会）中抽取40
个家庭进行调查[6,8]，实际调查7571个家庭。选取调
查家庭中年龄≥18岁的常住人口作为调查对象，
最终纳入19113名对象。本研究通过浙江省CDC
伦理委员会伦理审查，所有调查对象均在调查之前
签署知情同意书。

2. 方法：对调查对象进行问卷调查、体格检查
和实验室检测。采用自行设计的问卷进行调查，调
查内容包括：一般情况、行为和生活方式等。体格检
查包括身高、体重、腰围和血压，并计算BMI。采用
汞柱式血压计测量两次收缩压（SBP）和舒张压
（DBP），取两次读数的平均值作为实际值。如果2次
测量误差大于10 mm Hg（1 mm Hg = 0.133 kPa），则
需进行第3次测量，取3次读数的平均值。被调查
者空腹至少 10 h 后，采集肘静脉血 4 ml，使用 Beckman CX4 Pro 全自动生化分析仪（购自美国贝克曼库尔特公司）测定 TG, TC 和 HDL-C。

3. 判断标准：(1) 根据美国第 3 次国家健康和营养调查报告 (NHANES III) 标准[9]，将高血压分为 3 类亚型：单纯收缩期高血压 (ISH)、单纯舒张期高血压 (IDH) 和收缩期舒张期高血压 (SDH)。ISH 定义为 SBP≥140 mm Hg 和 DBP < 90 mm Hg；IDH 定义为 SBP < 140 mm Hg 和 DBP≥90 mm Hg；SDH 定义为 SBP≥140 mm Hg 和 DBP≥90 mm Hg。本次研究高血压组只包括血压未被控制 (SBP≥140 mm Hg 或 DBP≥90 mm Hg) 和近两周未服用降压药的高血压患者。 (2) 吸烟定义为每天至少吸 1 支，连续或累积达 6 个月。 (3) 饮酒定义为平均每周饮酒 (白酒、啤酒、葡萄酒或黄酒等) 至少 1 次。 (4) 超重定义为 BMI ≥ 24 kg/m²，肥胖定义为 BMI ≥ 28 kg/m²。(5) 脂质异常判断标准采用《中国成人血脂异常防治指南》标准[10]。TC 边缘升高为 5.18 mmol/L < TC < 6. 22 mmol/L，TC 升高为 TC ≥ 6. 22 mmol/L；TG 边缘升高为 1. 70 mmol/L < TG < 2. 26 mmol/L，TG 升高为 TG ≥ 2. 26 mmol/L；HDL-C 降低为 HDL-C < 1. 04 mmol/L。 (6) 研究对象剔除标准为包括以下两种情况：① 近两周内服用降脂药物者；② 经治疗后日前血脂正常者。

4. 质量控制：调查人员主要来自于各市县 (市、区) CDC 和基层社区卫生服务中心工作人员，均经 统一培训并通过考核。浙江省 CDC 工作组负责 各县 (市、区) 调查人员进行统一培训与考核，对现 场调查进行技术指导与质量控制。抽取 5% 的调查 表进行复核，要求符合率在 95% 以上。血压计要求 统一规格，并定期校正；各项目工作组对每名测量员 的血压测量值均进行复核。血样采集时需核对调查 对象人名，一致，空采采血管、离心管与体检表及简 册编码条一致。血样尽可能在采血现场心肌分离血 浆至离心管，核对信息后立即放入工地实验室，于 -20 °C 冰箱保存，不延期至浙江省 CDC 进行检测，必须保证样品在运途中不化冻 (应用干冰或 保温箱)，避免运送过程中标本受到污染。血样均 送至通过中国实验室国家认可委员会 (CNAL) 认可的浙江省 CDC 实验室检测，该实验室具有出具临床 检验报告的资质。

5. 统计学分析：调查数据采用 EpiData3.1 软件进行双录入，使用 Stata 11.0 软件进行分析。不 同亚型高血压粗患病率按青年 (18～44 岁)，中年 (45～59 岁)，老年 (≥ 60 岁) 3 个年龄组和性别分 别进行描述，使用第 5 次全国人口普查资料对患病 率进行年龄标化。对不同年龄组患病率的比较采用 趋势卡方检验。计数资料进行正态校正，正态分 布资料采用 x ± s 表示，组间差异的分析采用方差 分析；偏态分布资料采用中位数 [四分位数 (P25 ～ P75)] 表示，组间差异的分析采用非参数秩和检验； 计数资料的比较采用 χ² 检验。采用多因素非条件 logistic 回归分析不同高血压亚型与血脂异常的关系，同时对高血压组与正常血压组间分布有差异的可 疑影响因素进行调整。统计学分析以 P < 0.05 为差异有统计学意义。

结果

1. 基本情况：19 113 名调查对象中完成问卷调 查、体格检查和静脉采血等全部调查项目者共 17 437 名，应答率为 91.23%；剔除不符合标准者， 最终纳入 14 731 名。调查对象年龄为 (47.15 ± 14.77) 岁，其中，男性 6912 名 (46.92%)，女性 7819 名 (53.08%)，城市居民 5581 名 (37.89%)， 农村居民 9150 名 (62.11%)。其中人群吸烟率为 30.24%，饮酒率为 29.67%，14.15% 的人群有高血压家族史，文化程度以初中为主 (32.73%)，婚姻状 况以已婚为主 (87.43%)，见表 1。

2. 不同亚型高血压组与正常血压组的比较：14 731 名调查对象中，高血压患者 2777 例，粗患病率 为 18.85%。浙江省成年居民 ISH, IDH, SDH 病 例分别为 7.16%、4.60%、7.09%，标化患病率 分别为 5.46%、4.41%、5.75%。ISH、SDH 患病率 随着年龄的增加而升高，老年组 ISH 的患病率高于 IDH (χ² = 441.61, P < 0.01)、SDH (χ² = 99.82, P < 0.01)；男性 ISH 患病率低于女性 (χ² = 23.07, P < 0.01)。IDH 患病率高于女性 (χ² = 84.14, P < 0.01)、SDH 患病率也高于女性 (χ² = 26.91, P < 0.01)，见表 2。ISH, IDH, SDH 组与正常血压组比较，年龄、性别、地区、吸烟、饮酒、高血压家族史、文化程度、婚姻状况、BMI 等一般情况和 TC, HDL-C, TG 等血脂指标在不同亚型高血压组、正常对照组间 分布差异均有统计学意义，见表 1。

3. 高血压与血脂水平的关联分析：对 TC, HDL-C,TG 水平进行分组，分析发现不同血脂水平在各亚型高血压组分布的差异有统计学意义，见表 3。进一步以高血压亚型为因变量，调整年龄、性别、地区、吸烟、饮酒、高血压家族史、文化程度、婚姻状况、
表 1 各人口学特征在调查对象中的分布情况

<table>
<thead>
<tr>
<th>人口学特征</th>
<th>合计</th>
<th>正常血压</th>
<th>单纯收缩期高血压</th>
<th>单纯舒张期高血压</th>
<th>收缩压舒张压 < 140/90</th>
<th>收缩压舒张压 ≥ 140/90</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>调查人数(名)</td>
<td>14 731</td>
<td>11 954</td>
<td>1 055</td>
<td>677</td>
<td>1 045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>年龄(x ± s,岁)</td>
<td>47.15 ± 14.77</td>
<td>45.30 ± 14.50</td>
<td>61.12 ± 14.74</td>
<td>47.27 ± 14.10</td>
<td>54.06 ± 11.82</td>
<td>F = 498.94 < 0.01</td>
<td></td>
</tr>
<tr>
<td>性别(名%)</td>
<td>男性 6 912(46.92)</td>
<td>5 487(45.90)</td>
<td>420(39.81)</td>
<td>434(64.11)</td>
<td>571(54.64)</td>
<td>χ² = 131.70 < 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>女性 7 819(53.08)</td>
<td>6 467(54.10)</td>
<td>635(60.19)</td>
<td>243(35.89)</td>
<td>474(45.36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>地区(名%)</td>
<td>1 类城市 2 520(17.11)</td>
<td>1 825(15.27)</td>
<td>241(22.84)</td>
<td>180(26.59)</td>
<td>274(26.22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 类城市 3 061(20.78)</td>
<td>2 606(21.80)</td>
<td>183(17.35)</td>
<td>96(14.18)</td>
<td>176(16.84)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 类城市 2 829(19.20)</td>
<td>2 397(20.05)</td>
<td>141(13.36)</td>
<td>147(21.71)</td>
<td>144(13.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 类城市 2 429(17.20)</td>
<td>2 397(20.05)</td>
<td>141(13.36)</td>
<td>147(21.71)</td>
<td>144(13.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>吸烟(名%)</td>
<td>是 4 454(30.24)</td>
<td>3 565(29.82)</td>
<td>270(25.59)</td>
<td>261(38.55)</td>
<td>358(34.26)</td>
<td>χ² = 41.97 < 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>否 10 277(69.76)</td>
<td>8 379(70.18)</td>
<td>765(74.41)</td>
<td>416(61.45)</td>
<td>687(65.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>饮酒(名%)</td>
<td>是 4 371(29.67)</td>
<td>3 352(28.04)</td>
<td>312(29.57)</td>
<td>292(43.13)</td>
<td>415(39.71)</td>
<td>χ² = 124.51 < 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>否 10 360(70.33)</td>
<td>8 602(71.96)</td>
<td>743(70.43)</td>
<td>385(56.87)</td>
<td>630(60.29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>高血压家族史(名%)</td>
<td>是 2 074(14.15)</td>
<td>1 526(12.83)</td>
<td>158(15.05)</td>
<td>146(21.69)</td>
<td>244(23.48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>否 12 583(85.85)</td>
<td>10 369(87.17)</td>
<td>892(84.95)</td>
<td>527(77.31)</td>
<td>795(76.52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>文化程度(名%)</td>
<td>是 2 528(17.17)</td>
<td>1 778(14.88)</td>
<td>394(37.45)</td>
<td>88(13.00)</td>
<td>268(25.65)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>否 6 468(31.57)</td>
<td>3 617(30.27)</td>
<td>404(38.40)</td>
<td>233(34.42)</td>
<td>394(37.70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>初中及中专</td>
<td>是 4 819(32.73)</td>
<td>4 134(34.59)</td>
<td>181(17.21)</td>
<td>257(35.01)</td>
<td>267(25.55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>否 1 933(13.13)</td>
<td>1 702(14.24)</td>
<td>53(5.04)</td>
<td>87(12.85)</td>
<td>91(8.71)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大专及以上</td>
<td>是 796(5.41)</td>
<td>719(6.02)</td>
<td>20(1.90)</td>
<td>32(4.73)</td>
<td>25(2.39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>否</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>婚姻状况(名%)</td>
<td>在婚 12 859(87.43)</td>
<td>10 415(87.25)</td>
<td>895(85.00)</td>
<td>613(90.95)</td>
<td>936(89.66)</td>
<td>χ² = 275.46 < 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>未婚 1 158(7.87)</td>
<td>1 066(8.93)</td>
<td>214(2.28)</td>
<td>35(5.19)</td>
<td>33(3.16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>离婚或丧偶 691(4.70)</td>
<td>456(3.82)</td>
<td>134(12.73)</td>
<td>26(3.86)</td>
<td>75(7.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI(x ± s,kg/m²)</td>
<td>22.92 ± 3.24</td>
<td>22.58 ± 3.11</td>
<td>23.70 ± 3.30</td>
<td>24.71 ± 3.40</td>
<td>24.81 ± 3.47</td>
<td>F = 263.38 < 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC(x ± s,mmol/L)</td>
<td>4.22 ± 0.88</td>
<td>4.16 ± 0.87</td>
<td>4.54 ± 0.90</td>
<td>4.35 ± 0.88</td>
<td>F = 105.58 < 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HDL-C(x ± s,mmol/L)</td>
<td>1.12 ± 0.25</td>
<td>1.11 ± 0.25</td>
<td>1.15 ± 0.28</td>
<td>1.08 ± 0.24</td>
<td>F = 13.49 < 0.01</td>
<td></td>
</tr>
<tr>
<td>TCH(x ± s,mmol/L)</td>
<td>4.09 ± 1.05</td>
<td>4.05</td>
<td>1.27</td>
<td>1.46</td>
<td>1.38</td>
<td>χ² = 379.65 < 0.01</td>
<td></td>
</tr>
<tr>
<td>TCH(x ± s,mol/L)</td>
<td>0.76 ± 1.62</td>
<td>0.74 ± 1.54</td>
<td>0.87 ± 1.85</td>
<td>0.95 ± 2.25</td>
<td>0.91 ± 2.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注: 表中括号外数值为人数(名或例),括号内数值为比例(%),高血压家族史、文化程度和婚姻状况分别缺失74.7.5名

表 2 不同年龄组调查对象性别高血压患病情况(例%)

<table>
<thead>
<tr>
<th>年龄组(岁)</th>
<th>人数(名)</th>
<th>男性</th>
<th>女性</th>
<th>合计</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 –</td>
<td>2 833(44.55)</td>
<td>187(6.60)</td>
<td>1 055(1.44)</td>
<td>6 375(95.47)</td>
</tr>
<tr>
<td>45 –</td>
<td>2 454(50.05)</td>
<td>200(8.15)</td>
<td>2 837(10.55)</td>
<td>5 291(353)</td>
</tr>
<tr>
<td>60 –</td>
<td>1 625(51.51)</td>
<td>47(2.89)</td>
<td>1 440(11.69)</td>
<td>3 065(607)</td>
</tr>
<tr>
<td>合计</td>
<td>6 912</td>
<td>420(6.08)</td>
<td>434(6.28)</td>
<td>571(8.26)</td>
</tr>
<tr>
<td>正常血压</td>
<td>4.39</td>
<td>6.42</td>
<td>6.82</td>
<td>6.62</td>
</tr>
</tbody>
</table>

趋向性检验：χ² = 342.07 < 0.01
P值: < 0.01, 0.040, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.090, < 0.01
表3 不同血脂水平在各亚型高血压组的分布[例(%)]

<table>
<thead>
<tr>
<th>血脂水平 (mmol/L)</th>
<th>正常血压</th>
<th>单纯收缩期高血压</th>
<th>单纯舒张期高血压</th>
<th>收缩期舒张期高血压</th>
<th>χ^2 值</th>
<th>P 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5.18</td>
<td>10 571(88.43)</td>
<td>826(78.29)</td>
<td>556(82.13)</td>
<td>817(78.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.18 –</td>
<td>1 173(9.81)</td>
<td>188(17.82)</td>
<td>99(14.62)</td>
<td>193(18.47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥6.22</td>
<td>210(1.76)</td>
<td>41(3.89)</td>
<td>22(3.25)</td>
<td>35(3.55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1.04</td>
<td>6 885(57.60)</td>
<td>666(63.13)</td>
<td>335(49.48)</td>
<td>599(57.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1.04</td>
<td>5 069(42.20)</td>
<td>389(36.87)</td>
<td>342(50.52)</td>
<td>446(42.68)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1.70</td>
<td>9 952(79.91)</td>
<td>737(69.86)</td>
<td>402(59.38)</td>
<td>675(64.59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.70 –</td>
<td>1 213(10.15)</td>
<td>150(14.22)</td>
<td>107(15.81)</td>
<td>164(15.69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥2.26</td>
<td>1 189(9.95)</td>
<td>168(15.92)</td>
<td>168(15.92)</td>
<td>206(19.71)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表4 不同亚型高血压与血脂水平关联的多因素分析结果

<table>
<thead>
<tr>
<th>血脂水平 (mmol/L)</th>
<th>B 值</th>
<th>SE</th>
<th>Wald χ^2 值</th>
<th>P 值</th>
<th>$OR(95% CI)$ 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>单纯收缩期高血压</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.18 –</td>
<td>0.17</td>
<td>0.10</td>
<td>2.99</td>
<td>0.083</td>
<td>1.19(0.98 – 1.44)</td>
</tr>
<tr>
<td>≥6.22</td>
<td>0.15</td>
<td>0.20</td>
<td>0.55</td>
<td>0.459</td>
<td>1.16(0.79 – 1.70)</td>
</tr>
<tr>
<td>HDL-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1.04</td>
<td>-0.09</td>
<td>0.08</td>
<td>1.35</td>
<td>0.247</td>
<td>0.91(0.78 – 1.07)</td>
</tr>
<tr>
<td>TG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.70 –</td>
<td>0.38</td>
<td>0.11</td>
<td>11.36</td>
<td>0.001</td>
<td>1.43(1.16 – 1.76)</td>
</tr>
<tr>
<td>≥2.26</td>
<td>0.50</td>
<td>0.11</td>
<td>22.56</td>
<td><0.01</td>
<td>1.65(1.34 – 2.03)</td>
</tr>
<tr>
<td>单纯舒张期高血压</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.18 –</td>
<td>0.19</td>
<td>0.13</td>
<td>2.28</td>
<td>0.130</td>
<td>1.21(0.95 – 1.55)</td>
</tr>
<tr>
<td>≥6.22</td>
<td>0.34</td>
<td>0.25</td>
<td>1.85</td>
<td>0.173</td>
<td>1.40(0.86 – 2.27)</td>
</tr>
<tr>
<td>HDL-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1.04</td>
<td>0.13</td>
<td>0.09</td>
<td>2.07</td>
<td>0.150</td>
<td>1.14(0.95 – 1.36)</td>
</tr>
<tr>
<td>TG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.70 –</td>
<td>0.45</td>
<td>0.12</td>
<td>14.29</td>
<td><0.01</td>
<td>1.57(1.24 – 1.98)</td>
</tr>
<tr>
<td>≥2.26</td>
<td>0.78</td>
<td>0.11</td>
<td>51.84</td>
<td><0.01</td>
<td>2.18(1.76 – 2.70)</td>
</tr>
<tr>
<td>收缩期舒张期高血压</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.18 –</td>
<td>0.32</td>
<td>0.10</td>
<td>10.96</td>
<td>0.001</td>
<td>1.38(1.14 – 1.67)</td>
</tr>
<tr>
<td>≥6.22</td>
<td>0.16</td>
<td>0.21</td>
<td>0.56</td>
<td>0.452</td>
<td>1.17(0.78 – 1.75)</td>
</tr>
<tr>
<td>HDL-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1.04</td>
<td>-0.02</td>
<td>0.08</td>
<td>0.06</td>
<td>0.802</td>
<td>0.98(0.84 – 1.14)</td>
</tr>
<tr>
<td>TG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.70 –</td>
<td>0.36</td>
<td>0.10</td>
<td>12.74</td>
<td><0.01</td>
<td>1.43(1.18 – 1.75)</td>
</tr>
<tr>
<td>≥2.26</td>
<td>0.55</td>
<td>0.10</td>
<td>32.04</td>
<td><0.01</td>
<td>1.73(1.43 – 2.10)</td>
</tr>
</tbody>
</table>

注：调整年龄、性别、地区、吸烟、饮酒、高血压家族史、文化程度、婚姻状况、超重和肥胖、TC, HDL-C 和 TG
超重和肥胖等因素，分析 TC, HDL-C, TG 异常与不同类型高血压患病的关系。多因素 logistic 分析结果见表 4, ISH 的血脂影响因素为 TG, TG 边缘升高和 TG 升高可增加 ISH 的患病风险。IDH 的血脂影响因素为 TG, TG 边缘升高和 TG 升高也可增加 IDH 的患病风险，效应高于其对 ISH 的效应；SDH 的血脂影响因素为 TC 和 TG, TC 边缘升高个体的 SDH 患病风险是 TC 正常个体的 1.38 倍；与 TG 正常个体相比, TG 边缘升高和 TG 升高可降低 SDH 患病风险。

讨 论

本次调查以浙江省 15 个县（市、区）≥18 岁居民为研究对象，进行血脂异常与不同亚型高血压关系的研究。与 2000—2001 年全国 10 个省份 35 ~ 74 岁成年人各亚型高血压患病率相比，ISH 患病率低于全国水平 (7.6%), IDH 高于全国水平 (4.4%), SDH 低于全国水平 (7.4%) [11]; ISH 标化患病率高于杨晶等 [12] 调查结果，但 IDH、SDH 标化患病率低于其调查结果。

不同亚型高血压在年龄、性别分布上存在差异。ISH、SDH 患病率随年龄增加明显升高。青年组、中年组以患 IDH 和 SDH 为主，老年组的 ISH 患病率明显高于 IDH 和 SDH。女性 ISH 患病率明显高于男性，而 IDH、SDH 低于男性，结果与相关报道一致 [11, 12]。研究发现，不同亚型高血压患病表现出明显的年龄特征；IDH 患病年龄较早，SDH 居中，ISH 最晚 [13]。不同年龄段提示不同血管老化程度、结构和功能状态。收缩压不断升高导致脉压不断下降表明外周小动脉阻力增加和中央动脉的硬化转变，IDH 和 SDH 最终将转变成 ISH [13]。

笔者研究发现，ISH、IDH 和 SDH 共同血脂影响因素为 TG, 且 TG 可独立地增加不同亚型高血压的患病风险。研究表明，TG 水平是高血压患病的影响因素，也是心脏病血管疾病的重要危险因素 [14], 笔者结果与之一致，但目前 TG 与高血压亚型关联的探讨较少。许长禄等 [15] 分析发现，血脂异常为 ISH 患病的影响因素，但多因素分析发现该关联不存在，与笔者研究结果有差异，原因可能是血脂异常含多个指标，TG 的作用可能被其他血脂指标削弱。

笔者还发现，TG 边缘升高会增加 SDH 的患病风险，而 TC 异常未发现相关性，可能与研究对象较少有关；未发现 HDL-C 降低与高血压的患病风险相关。邱蕾等 [16] 也未发现 HDL-C 与血压水平具有相关性，但发现 TC 与 HDL-C 比值与血压呈正相关，且该比值被证明是预测高血压的较优指标，并且该研究提示，可以继续将不同血脂指标进行组合来探讨其与不同亚型高血压患病风险的相关性。

综上，本次研究提示，浙江省居民 TC、TG 异常将增加各亚型高血压患病风险，应加强人群中血脂异常筛查，尤其是 TG，采取有效措施控制 IDH，降低 ISH 发生，从而进一步减少心血管疾病的患病风险。

参考文献