人体生物样品中邻苯二甲酸酯类的含量

张蕴晖 陈秉衡 郑力行 吴晓芸

【摘要】目的 研究和探讨环境内分泌干扰物邻苯二甲酸酯类在人体生物样品中的含量水平。方法 运用反相高效液相色谱分析法测定了人体生物样品 60 份血清、36 份精液、1 份脂肪中 3 种邻苯二甲酸酯类物质：phthalates、邻苯二甲酸二乙酯、DEP、邻苯二甲酸二丁酯、DBP 和邻苯二甲酸-2-乙基己酯、DEHP 的含量水平。同时测定了血清中有关激素水平和精液常规指标，并运用 SPSS 分析软件中的非参数统计方法对测定结果进行了相关性分析。结果 上述 3 种人体生物样品中均可检测到 phthalates、脂肪中的 phthalates 含量范围在 ND~2.19 mg/kg，血清中 ND~37.91 mg/L，精液中 ND~0.08~1.32 mg/L。Spearman 相关分析结果显示：女性血清中 DBP 与 E2 呈正相关，r = 0.442；DEP 与 T 呈负相关，r = -0.486。精液中 phthalates 与精子活力呈正相关，P<0.01；DBP 与精子活力呈正相关，r = 0.05。结论 邻苯二甲酸酯类物质存在于人体组织中，并可能影响人类的精液质量。

【关键词】邻苯二甲酸酯类 色谱法 高压液相

Study on the level of phthalates in human biological samples ZHANG Yun-hui* CHEN Bing-heng ZHENG Li-xiong WU Xiao-yun*. Department of Environmental Health Sciences School of Public Health Fudan University Shanghai 200032 China

【Abstract】Objective To monitor the level of phthalates in human biological samples. Methods The concentrations of three commonly-used phthalate di-ethyl phthalate DEP di-n-butyl phthalate DBP di-2-ethylhexyl phthalate DEHP in the human biological samples were measured by using reversed-phase HPLC. The blood serum samples were collected from 52 women and 8 men semen specimens from 36 men and fat samples from 6 women and 5 men. All these people were randomly selected from 23 to 50 years of age and residing in Shanghai. We also measured hormone levels of serum and conventional indices of semen specimens. Results The three phthalates were detected in most of the biological samples with median levels of 5.71 mg/L ND-37.91 mg/L in blood serum 0.30 mg/L ND-0.08~1.32 mg/L in semen specimens and 0.72 mg/kg ND-2.19 mg/kg in fat samples. The spearman correlation coefficients between concentrations of phthalates and levels of hormone in serum were 0.442 for DBP and E2 and -0.486 for DEP and testosterone. There was a positive association between liquefied time of semen and semen concentrations of phthalates. The correlation coefficients were 0.456 for DEP 0.475 for DBP and 0.457 for DEHP respectively. There was no significant difference between semen concentrations of phthalates and sperm density. Conclusion These results suggest that people residing in Shanghai area are exposed to phthalates particularly to DBP and DEHP though the level is still relatively low.

【Key words】Phthalic acides Chromatography high pressure liquid
材料与方法

一、试剂

邻苯二甲酸2-乙基己酯 DEHP 纯度 > 99.9% 上海试剂一厂 邻苯二甲酸二丁酯 DBP 纯度 > 95% 上海试剂二厂 邻苯二甲酸二乙酯 DEP 纯度 > 99.5% 上海医药集团上海化学试剂公司

二、仪器

HP-1100 高效液相色谱仪 日本惠普公司

日本日立公司 电热恒温水浴箱 上海医疗器材厂 DHG-9023A 电热恒温鼓风干燥箱 上海精宏实验设备有限公司 Serono Diagnostics 血清激素测定仪 Serozyme 公司

三、样品收集和预处理

血清和精液样品收集自北京市计划生育科学研究所对象来源于经筛选的健康人群，样品收集自北京市第一人民医院外科手术病人，均为经病理学检查确定为正常组织周边的脂肪。

1. 血清预处理

取 1 ml 血清加入 5 ml 正己烷搅拌振荡器上剧烈振荡 5～10 min 后 2000 r/min 离心 5 min 取上层正己烷层，空气泵吹干至 50 µl 用甲醇饱和的正已烷定容至 0.2 ml 后进样。

2. 精液预处理

新鲜精液液化后 0～20℃冷冻保存，0℃时反复冻融使精子细胞破裂 0～20℃ 5 min 后取 2 ml 上层精浆，依次加入 5 ml 正己烷和 1 ml 负极振荡器上剧烈振荡 5～10 min 后 500 r/min 离心 5 min 取上层正己烷层，在剩余下层精浆中再加入 5 ml 正己烷重复振荡离心后取正己烷层。两次正己烷层空气泵吹干，用甲醇饱和的正己烷定容至 0.2 ml 后进样。

3. 脂肪预处理

新鲜冰冻脂肪组织解冻后用生理盐水漂洗 3 遍滤纸吸干后准确称取 1 g，加入刻度离心管中加入 2 ml 乙酸和 6 ml 正己烷超声 30 min 后产品搅拌器剧烈振荡 10 min 2000 r/min 离心 5 min 后取正己烷层，在刻度离心管中加入 6 ml 正己烷振摇离心后取正己烷层，合并两次正己烷层空气泵吹干，用甲醇饱和的正己烷定容至 0.2 ml 后进样。

4. 色谱条件

1. 色谱条件 Inertsil® ODS-3 5 µm 250 mm × 4.6 mm 色谱柱 日本 GL 公司 UV 紫外检测器 测定波长 228 nm 柱温 35℃ 浴液 A 90% 甲醇 10% 水 B 100% 甲醇 浴液梯度方式 0～3.5 min 50% B 3.5～15 min 90% B 16～20 min 50% B 洗脱速度 0.8 ml/min 进样量 20 µl 2. 定性分析

用 phthalates 单标和混合标样测试各种 phthalates 的保留时间，样品的定性分析采用与标样的保留时间相对照的方法进行。3. 定量分析

样品处理后进行色谱分析所得的峰面积与样品的工作曲线相比较，通过计算得出样品中含该种 phthalates 的实际浓度。

五、玻璃器皿

由于 phthalates 广泛存在，为避免来自玻璃器皿表面的污染，全部实验用玻璃器皿均用玻璃器皿清洗剂仔细洗涤后，依次用冷水、热水和蒸馏水冲洗，再放于 100℃烘箱中烘干使用前再用正己烷淋洗两次。本实验杜绝使用塑料制品。

六、血清激素测定

ELISA 试剂盒测定血清中黄体生成素、卵泡刺激素、促性腺激素、FSH、催乳素、PRL、孕酮、雌酮、雌二醇、睾酮、二氢睾酮、二氢睾酮。用 Biozyme 试剂盒 Biochemical Systems 公司测定血清中 LH、FSH、PRL、LPO 用 Serozyme 试剂盒 Bio-Ekon Biotechnology 公司测定血清中 E2。
结 果

1. 标准品的校正曲线及检测限:配制 0.2, 0.4, 4, 12 µg/L 的校正品, HPLC 检测得的峰面积变化率与校正品浓度成比例, 峰面积校正曲线为 Y = \[\frac{12 + 32.9}{3.98} = 0.997\] DEP 标准曲线为 Y = 8.23 + 28.70X \[\text{DEHPI} = 0.999\] 本实验条件下 ODS-3 柱对 DEP- DBP 和 DEHP 的检测下限为 0.3 ng.

2. 工作曲线: 1,0 脂肪的工作曲线以鸡脂肪为标准品, 在其中分别加入不同浓度的标准品, 经 HPLC 检测得的峰面积变化率与标准品浓度比例。峰面积校正曲线为工作曲线, DEP 工作曲线 Y = 44.65 + 32.98X \[\text{DEP} = 0.988\] DBP 工作曲线 Y = 14.44 + 27.58X \[\text{DBP} = 0.981\] DEHP 工作曲线 Y = 15.83 + 24.85X \[\text{DEHP} = 0.987\] 以血清为空白, 分别加入不同浓度的标准品的峰面积变化率与标准品浓度比例的峰面积校正曲线为工作曲线, DEP 工作曲线 Y = 193.23 + 34.35X \[\text{DEP} = 0.910\] DBP 工作曲线 Y = 66.11 + 34.78X \[\text{DBP} = 0.997\] DEHP 工作曲线 Y = 43.11 + 24.96X \[\text{DEHP} = 0.997\] 以精液为空白, 按照上述方法绘制工作曲线, DEP 工作曲线 Y = 31.37 + 24.99X \[\text{DEP} = 0.981\] DBP 工作曲线 Y = 14.60 + 45.98X \[\text{DBP} = 0.996\] DEHP 工作曲线 Y = 13.30 + 54.50X \[\text{DEHP} = 0.992\] 以精液为空白, 按照上述方法绘制工作曲线, DEP 工作曲线 Y = 31.37 + 24.99X \[\text{DEP} = 0.981\] DBP 工作曲线 Y = 14.60 + 45.98X \[\text{DBP} = 0.996\] DEHP 工作曲线 Y = 13.30 + 54.50X \[\text{DEHP} = 0.992\]

3. 人体生物样品的检测结果: 在避免塑料制品污染的前提下, 根据设定条件, 按照上述方法绘制工作曲线, DEP 工作曲线 Y = 31.37 + 24.99X \[\text{DEP} = 0.981\] DBP 工作曲线 Y = 14.60 + 45.98X \[\text{DBP} = 0.996\] DEHP 工作曲线 Y = 13.30 + 54.50X \[\text{DEHP} = 0.992\] 以精液为空白, 按照上述方法绘制工作曲线, DEP 工作曲线 Y = 31.37 + 24.99X \[\text{DEP} = 0.981\] DBP 工作曲线 Y = 14.60 + 45.98X \[\text{DBP} = 0.996\] DEHP 工作曲线 Y = 13.30 + 54.50X \[\text{DEHP} = 0.992\] 以精液为空白, 按照上述方法绘制工作曲线, DEP 工作曲线 Y = 31.37 + 24.99X \[\text{DEP} = 0.981\] DBP 工作曲线 Y = 14.60 + 45.98X \[\text{DBP} = 0.996\] DEHP 工作曲线 Y = 13.30 + 54.50X \[\text{DEHP} = 0.992\] 以精液为空白, 按照上述方法绘制工作曲线, DEP 工作曲线 Y = 31.37 + 24.99X \[\text{DEP} = 0.981\] DBP 工作曲线 Y = 14.60 + 45.98X \[\text{DBP} = 0.996\] DEHP 工作曲线 Y = 13.30 + 54.50X \[\text{DEHP} = 0.992\]

表 1 人体脂肪中三种邻苯二甲酸酯类含量水平 n = 110

<table>
<thead>
<tr>
<th>项目</th>
<th>DEP mg/kg</th>
<th>DBP mg/kg</th>
<th>DEHP mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>含量范围</td>
<td>0.03~2.01</td>
<td>ND~2.19</td>
<td>ND~1.88</td>
</tr>
<tr>
<td>平均值</td>
<td>0.66</td>
<td>0.99</td>
<td>0.52</td>
</tr>
</tbody>
</table>

4. 相关性统计分析: 由于组织、体液中的 phthalates 含量水平和激素及精液常规测定数据均非正态分布, 因此宜用非参数相关性分析。用 SPSS10.0 软件中的 Spearman 相关分析对以上数据进行相关性分析, 结果见表 5~7

从以上结果可以看出, 女性血清中 DBP 与 E2 呈正相关, r = 0.442; DEP 与 T 呈负相关, r = -0.486; 男性血清中 DEP 含量与血清中的 PRL 水平呈显著的正相关, r = 0.791。而在血清中的 phthalates 与 LH、FSH 等等垂体分泌的激素水平间相关关系并不显著: P < 0.05。精液中 3 种 phthalates 含量水平与精液的液化时间呈显著正相关, P < 0.01; DBP 与精液量、活力分级中的 c 级精子活力呈显著负相关, 与 b 级精子活力呈显著正相关, P < 0.05; DEHP 与精液量、活力分级中的 c 级精子活力呈显著正相关, 与精子畸形率 b 级精子活力呈显著正相关, P < 0.05。
表 3 男性血清中三种邻苯二甲酸酯类含量及有关激素含量水平 $n = 8$

<table>
<thead>
<tr>
<th>项目</th>
<th>DEP</th>
<th>DBP</th>
<th>DEHP</th>
<th>LH</th>
<th>FSH</th>
<th>PRL</th>
<th>E2</th>
<th>P</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>含量范围</td>
<td>ND ~ 37.91</td>
<td>4.76 ~ 14.94</td>
<td>4.05 ~ 23.99</td>
<td>0.99 ~ 13.05</td>
<td>2.11 ~ 28.85</td>
<td>5.37 ~ 35.66</td>
<td>0.95 ~ 36.29</td>
<td>0.19 ~ 0.83</td>
<td>0.07 ~ 5.22</td>
</tr>
<tr>
<td>平均值</td>
<td>6.60</td>
<td>7.24</td>
<td>9.48</td>
<td>4.25</td>
<td>8.50</td>
<td>19.17</td>
<td>10.69</td>
<td>0.45</td>
<td>3.34</td>
</tr>
</tbody>
</table>

表 4 人精液中三种邻苯二甲酸酯类含量范围及精液常规指标检查数据 $n = 36$

<table>
<thead>
<tr>
<th>项目</th>
<th>DEP</th>
<th>DBP</th>
<th>DEHP</th>
<th>年龄</th>
<th>精子密度</th>
<th>精液量</th>
<th>液化时间</th>
<th>pH 值</th>
<th>畸形率</th>
<th>活率</th>
<th>活力分级</th>
</tr>
</thead>
<tbody>
<tr>
<td>范围</td>
<td>0.13 ~ 1.32</td>
<td>0.09 ~ 0.98</td>
<td>0.08 ~ 130 $\times 10^6$</td>
<td>0 ~ 48</td>
<td>0 ~ 4.8</td>
<td>20 ~ 35</td>
<td>7.0 ~ 7.5</td>
<td>16 ~ 52</td>
<td>30 ~ 84</td>
<td>16 ~ 70</td>
<td>10 ~ 32</td>
</tr>
<tr>
<td>平均值</td>
<td>0.47</td>
<td>0.16</td>
<td>0.28</td>
<td>31.6</td>
<td>45.5 $\times 10^6$</td>
<td>2.85</td>
<td>29</td>
<td>7.2</td>
<td>26</td>
<td>64</td>
<td>36</td>
</tr>
</tbody>
</table>

表 5 女性血清中各种邻苯二甲酸酯类含量及激素水平范围相关性分析结果

<table>
<thead>
<tr>
<th>邻苯二甲酸酯类</th>
<th>项目</th>
<th>LH</th>
<th>FSH</th>
<th>PRL</th>
<th>E2</th>
<th>P</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>相关系数</td>
<td>-0.008</td>
<td>0.143</td>
<td>-0.028</td>
<td>-0.051</td>
<td>-0.378</td>
<td>-0.486 *</td>
<td></td>
</tr>
<tr>
<td>P 值</td>
<td>0.967</td>
<td>0.434</td>
<td>0.889</td>
<td>0.744</td>
<td>0.148</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>样本数</td>
<td>32</td>
<td>32</td>
<td>28</td>
<td>44</td>
<td>16</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>相关系数</td>
<td>0.017</td>
<td>0.023</td>
<td>-0.275</td>
<td>0.442 **</td>
<td>0.253</td>
<td>0.266</td>
<td></td>
</tr>
<tr>
<td>P 值</td>
<td>0.928</td>
<td>0.899</td>
<td>0.157</td>
<td>0.003</td>
<td>0.345</td>
<td>0.244</td>
<td></td>
</tr>
<tr>
<td>样本数</td>
<td>32</td>
<td>32</td>
<td>28</td>
<td>44</td>
<td>16</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>相关系数</td>
<td>-0.052</td>
<td>-0.128</td>
<td>-0.098</td>
<td>0.141</td>
<td>0.300</td>
<td>0.280</td>
<td></td>
</tr>
<tr>
<td>P 值</td>
<td>0.776</td>
<td>0.483</td>
<td>0.619</td>
<td>0.362</td>
<td>0.259</td>
<td>0.219</td>
<td></td>
</tr>
<tr>
<td>样本数</td>
<td>32</td>
<td>32</td>
<td>28</td>
<td>44</td>
<td>16</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

表 6 男性血清中各种邻苯二甲酸酯类含量及激素水平范围相关性分析结果

<table>
<thead>
<tr>
<th>邻苯二甲酸酯类</th>
<th>项目</th>
<th>LH</th>
<th>FSH</th>
<th>PRL</th>
<th>E2</th>
<th>P</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>相关系数</td>
<td>0.136</td>
<td>-0.191</td>
<td>0.791 *</td>
<td>-0.356</td>
<td>无</td>
<td>-0.355</td>
<td></td>
</tr>
<tr>
<td>P 值</td>
<td>0.747</td>
<td>0.651</td>
<td>0.019</td>
<td>0.433</td>
<td>无</td>
<td>0.389</td>
<td></td>
</tr>
<tr>
<td>样本数</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>相关系数</td>
<td>-0.587</td>
<td>-0.347</td>
<td>0.036</td>
<td>-0.143</td>
<td>无</td>
<td>-0.228</td>
<td></td>
</tr>
<tr>
<td>P 值</td>
<td>0.126</td>
<td>0.399</td>
<td>0.933</td>
<td>0.760</td>
<td>无</td>
<td>0.588</td>
<td></td>
</tr>
<tr>
<td>样本数</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>相关系数</td>
<td>-0.381</td>
<td>-0.071</td>
<td>-0.071</td>
<td>-0.429</td>
<td>无</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>P 值</td>
<td>0.352</td>
<td>0.867</td>
<td>0.867</td>
<td>0.337</td>
<td>无</td>
<td>0.207</td>
<td></td>
</tr>
<tr>
<td>样本数</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

表 7 精液中各种邻苯二甲酸酯类含量范围及常规指标间相关性分析结果

<table>
<thead>
<tr>
<th>邻苯二甲酸酯类</th>
<th>年龄</th>
<th>精子密度</th>
<th>精液量</th>
<th>液化时间</th>
<th>pH 值</th>
<th>畸形率</th>
<th>活率</th>
<th>活力分级</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP</td>
<td>0.034</td>
<td>-0.247</td>
<td>-0.102</td>
<td>0.456 **</td>
<td>0.162</td>
<td>0.185</td>
<td>-0.130</td>
<td>0.130</td>
</tr>
<tr>
<td>DBP</td>
<td>0.861</td>
<td>0.146</td>
<td>0.552</td>
<td>0.005</td>
<td>0.344</td>
<td>0.279</td>
<td>0.451</td>
<td>0.147</td>
</tr>
<tr>
<td>DEHP</td>
<td>0.090</td>
<td>-0.259</td>
<td>-0.388 *</td>
<td>0.475 **</td>
<td>0.308</td>
<td>0.289</td>
<td>-0.247</td>
<td>0.247</td>
</tr>
<tr>
<td>P 值</td>
<td>0.642</td>
<td>0.128</td>
<td>0.020</td>
<td>0.003</td>
<td>0.068</td>
<td>0.087</td>
<td>0.147</td>
<td>0.147</td>
</tr>
</tbody>
</table>

* $P < 0.05$ * * $P < 0.01$
讨论

自1992年Carlsen等报道男性精液数量在过去50年中约下降了40%~50%。环境内分泌干扰物[1]EEDs所导致的一系列生物学效应，如雄性生殖系统发育异常、尿道下裂等，就引起了世界范围的广泛关注。作为EEDs的一类，邻苯二甲酸酯类物质phthalates由于生产成本低、品种多、产量大等是塑料行业广泛使用的增塑剂，但同时phthalates并未与塑料的高分子碳链真正结合，随着时间的推移，它会逐渐从塑料中释放出来，进入环境和生物体内，对环境和生物造成潜在危害。

目前关于phthalates的研究很多，从已有的暴露资料可以看出，phthalates广泛存在于环境、空气、水中。土壤、食品等。食品中的鱼、虾等中甲含量从10^{-9}到10^{-7}不等[13,14,50]，但对能反映人体内接触情况的人体生物样品中phthalates含量的检测数据却非常少。本研究选取上海地区部分健康人群的生物样品进行检测，由检测结果可以看出人体脂肪、血清、精液中普遍含有phthalates。DEP/DBP/DEHP含量水平分别为0.72 mg/kg脂肪、ND~2.19 mg/kg脂肪、7.1 mg/L血清、ND~37.91 mg/L孕妇、30 mg/L精液、0.08~1.32 mg/L/OOABC。现选取25份人体脂肪样品的测定结果表明，DBP在人脂肪组织中含量为0.01~0.30 mg/kgDEP为0.3~1.0 mg/kg，另一13份人全血样品测定结果指出DBP在人血中含量为0.02~0.10 mg/L。已知在本次测定结果范围内，精液样品中phthalates的含量至今未见报道。

从测定的平均值来看，表1中甲含量内暴露情况的血清样品中DEHP水平＞DBP＞DEP，男性高于女性。而脂肪、精液样品中3种phthalates含量水平无明显差异，血清中不同phthalates含量的差异可能与phthalates在生产和生活中的产量和使用量的不同有关。在我国Phthalates产量占增塑剂总产量的80%。其中DEHP是使用的一种，约占增塑剂总产量的45%。其次为DBP而DEP的使用量则较前者为少，不同性别中phthalates含量的不同可能与男性社会活动的差异有关。脂肪和精液中的phthalates含量远小于血清中的含量。这与phthalates的代谢特性有关。动物代谢研究表明白种80%~90%的phthalates在体内被小肠内的非特异性酯酶迅速代谢成稳定的单体MEHP或MBP，MEHP与葡萄糖醛酸结合后48h随尿排出。因此，phthalates不大可能蓄积于体内的特异性器官中。体内组织器官中phthalates的含量较低，但与本次测定的脂肪和精液中的含量相符。目前没有文献报道phthalates在3种组织间的代谢速度和代谢率的差异。

作为一种环境污染干扰物，phthalates在动物试验中显示的生殖和发育毒性作用被认为可能与其对内分泌系统的干扰作用有关。而且动物试验中也发现了染色体微丝异常水平的降低，那么，能否将动物试验的结果外推至人类中？phthalates能否在人群中表现出相似的生物效应？针对这些问题，本研究在测定生物样品中phthalates的含量水平的同时，还采用ELISA法测定了人血清样品中的激素水平，试图探讨两者之间的相关关系。

血清中phthalates含量通常作为phthalates暴露的生物标志物之一。本次人血清样品的测定结果和Spearman相关性分析可以看出，女性血清中仅有DBP含量与E_{2}呈正相关，DEP与T呈负相关。相关系数分别为0.442和0.486。且仅呈强弱相关关系。男性血清中DEP含量与PRL呈显著正相关，相关系数为0.791。其他phthalates与激素水平之间并无显著相关性，P>0.05。而且3种phthalates与各种激素水平间的相关关系并不均衡。相关系数或正或负没有趋势可循。由于phthalates在体内具有快速代谢的生物特性，因此血清中phthalates含量水平只能表示现在的暴露水平，不能显示过去的暴露状况。而血清中的激素水平是既往暴露累积的结果。因此，仅根据一次横断面的测定结果是无法得出准确结论的。尚需要一个长时间的、设计周密的时间序列研究来证实。

Phthalates毒性作用的主要靶器官是雄性生殖系统。因此，精液中phthalates含量水平的测定可以直接反映靶器官水平的暴露情况。但是，目前关于phthalates和精液质量间关系的报道非常少。在美国毒物和疾病登记署ATSDR的一项报道[15]中，已未发现精液中DBP含量水平和精子数间存在定量相关关系。本次研究选定上海地区部分健康男性进行测定，以证实精液中phthalates的含量和相关的精液常规指标结果发现，精液中3种phthalates含量与精液的液化时间呈显著正相关。DBP和DEP与精液量呈显著负相关。DEHP还与精子畸形率呈正相关。而3种phthalates与年龄、精子密度、pH值和精子活率间无显著相关关系。将精子活力进行分级以
磷酸盐对人类液休的质量可能有一定影响。但两者间的剂量-反应关系尚待进一步的研究证实。磷酸盐对人体及后代潜在的危害不容忽视，需要进一步加强这方面的研究。