中华医学会主办。
文章信息
- 李菁 要茂盛
- LiJing,YaoMaosheng
- 空气介质中耐药细菌和耐药基因的研究进展
- State-of-the-art status on airborne antibiotic resistant bacteria and antibiotic resistance genes
- 中华预防医学杂志, 2018,52(4)
- http://dx.doi.org/10.3760/cma.j.issn.0253-9624.2018.04.021
- 引用本文:
-
文章历史
- 投稿日期: 2017-11-30
要茂盛 100871 北京大学环境科学与工程学院
Corresponding author: Yao Maosheng, Email: yao@pku.edu.cn
抗生素的长期滥用导致了细菌耐药性的增强、超级细菌的出现和日益增多,这些已经或正在严重危及人类健康[
为了评估抗生素滥用对生态平衡和人类健康带来的严重后果,已有学者针对各种地表环境中的耐药细菌和基因传播蓄积等进行了大量研究,如污水处理厂、河流、底泥、养殖场、农田等[
一、耐药细菌在空气中的来源、浓度和分布 除了不同的地表环境介质,包括土壤、水体界面如湖泊、海洋、河流等自然源,部分人为活动如污水处理、畜牧养殖、堆肥发酵等也是空气中细菌的重要来源[
![]() |
图1空气介质中耐药菌及耐药基因排放源、传播及影响 |
在其他职业环境中,如市政污水处理厂(urban wastewater treatment plant, UWTP)每日人均当量的出水中约含109~1012 CFU,其中至少有107~109 CFU的细菌属于获得性耐药[
此外,医院作为人类疾病相关抗生素的主要消耗场所,其空气环境被认为是各种耐药细菌、甚至是多重耐药(multi-drug resistant, MDR)细菌的储藏库[
职业暴露场所空气中的耐药细菌和基因会对场所内部和周边的人群健康造成呼吸暴露风险。以MRSA为例,医院获得性MRSA(hospital-acquired MRSA, HA-MRSA)的传播媒介除了医护人员本身(如医护服、医用手套等)及其所使用的医疗用具外[
二、普通室内与室外空气中耐药细菌和基因的丰度、分布和传播 细菌耐药性问题的棘手之处在于即使在普通室内和室外的空气介质中,耐药细菌和基因也已经逐渐被检测到。Gandolfi等[
可以看出,目前对于空气环境中耐药基因的研究多集中于四环素类或有限的几种基因片段,造成这种情况的主要原因是受限于传统的荧光定量PCR技术。而高通量荧光定量PCR技术可以实现同时对多达上百种抗性基因或多个样品进行定量分析[
关于空气介质中耐药基因的影响因素,Hu等[
三、研究展望 经过多方努力,我国在解决大气污染问题上已经取得了一定进展;但空气中的耐药基因作为新型空气污染物的出现没能得到足够的重视,特别是我国是抗生素使用大国。耐药细菌和耐药基因均能够形成生物气溶胶,不仅能在一定的条件下引起气源感染,对人类的生命健康造成威胁,而且可以通过沉降影响微生态平衡。与其他环境介质相比,空气介质蕴含着种类更加丰富的耐药基因;然而关于其来源、分布和传播机制等的文献报道仍旧匮乏,使得空气生物污染问题被严重低估。综合现有的状况,除了从国家和政府层面上继续加强管理和控制抗生素在畜牧养殖业和医院临床治疗中的使用以外,在未来应对耐药细菌以及耐药基因的相关研究及行动中,特别是在空气介质中的,作者认为如下几点可能需要特别关注,从而可以为有效防控细菌耐药性的扩散、更好地保护人群健康。
1.开展环境中耐药细菌监测: 大力开展对职业环境、室内环境和大气环境空气中耐药细菌和基因丰度和分布的监测工作,获得空气中常见耐药细菌和基因(包括基因转移元件)的清单,同时为建立抗生素使用和空气中耐药细菌和基因的丰度之间的数学模型提供数据基础;此外,目前对于空气中耐药基因的研究,大多没有区分其究竟是来自有活性的宿主细胞,还是裸露游离的DNA分子,这影响了我们对耐药基因在不同环境介质中的扩散机制的理解,在未来的研究中应注意区分。
2.研究细菌耐药和基因传播机制: 利用实验室研究和模拟研究分析耐药细菌和基因的传播机制,如传播距离,以及经过远距离传输后是否还具有生物活性等,是否仍然具有危害性,分析环境因子如气象条件、大气辐射等对耐药细菌和基因传播效率的影响。
3.开展空气中耐药细菌和基因毒理学研究: 利用动物模型等对空气中耐药细菌和基因进行毒理学研究,并深入了解耐药细菌和基因对呼吸道微生态的影响,为建立空气中耐药细菌和基因的风险评估体系和空气耐药微生物浓度标准体系提供数据支持。
4.发展病原体快速、精准的甄别技术: 该技术的发展也是遏制细菌耐药性发展的关键。例如,过去研究人员通过利用生物传感器可以在几分钟内检测到临床患者呼出气中H3N2病毒和H1N1病毒[
5.加大开展新型抗菌药物的研发工作: Ling等[
[2]BeaberJW, HochhutB, WaldorMK. SOS response promotes horizontal dissemination of antibiotic resistance genes[J]. Nature, 2004,427(6969):72-74. DOI: 10.1038/nature02241.
[3]McKinneyCW, PrudenA. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater[J]. Environ Sci Technol, 2012,46(24):13393-13400. DOI: 10.1021/es303652q.
[4]McEachranAD, BlackwellBR, HansonJD, et al. Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter[J]. Environ Health Perspect, 2015,123(4):337-343. DOI: 10.1289/ehp.1408555.
[5]VikeslandPJ, PrudenA, PJJA, et al. Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance[J]. Environ Sci Technol, 2017,51(22):13061-13069. DOI: 10.1021/acs.est.7b03623.
[6]AMR review. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations[EB/OL].[2016-05-03].https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf.
[7]AMR review. The review on antimicrobial resistance, tackling drug-resistant infections globally: Final report and recommendations[EB/OL].[2017-11-05].https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf.
[8]DeLeoFR, ChambersHF. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era[J]. J Clin Invest, 2009,119(9):2464-2474. DOI: 10.1172/JCI38226.
[9]World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics (2017)[EB/OL].[2017-12-12].http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/.
[10]PalC, Bengtsson-PalmeJ, KristianssonE, et al. The structure and diversity of human, animal and environmental resistomes[J]. Microbiome, 2016,4(1):54. DOI: 10.1186/s40168-016-0199-5.
[11]PrudenA, PeiR, StorteboomH, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environ Sci Technol, 2006,40(23):7445-7450.
[12]MansonJM, SmithJM, CookGM. Persistence of vancomycin-resistant enterococci in New Zealand broilers after discontinuation of avoparcin use[J]. Appl Environ Microbiol, 2004,70(10):5764-5768. DOI: 10.1128/AEM.70.10.5764-5768.2004.
[13]CrecchioC, RuggieroP, CurciM, et al. Binding of DNA from Bacillus subtilis on montmorillonite-humic acids-aluminum or iron hydroxypolymers: Effects on transformation and protection against DNase[J]. Soil Sci Soc Am J, 2005, 69 (3): 834-841.
[14]LevySB, FitzgeraldGB, MaconeAB. Spread of antibiotic resistance plasmids from chicken to chicken and from chicken to man[J]. Nature, 1976,260(5546): 40-42.
[15]CourvalinP. Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria[J]. Antimicrob Agents Chemother, 1994,38(7):1447-1451.
[16]KruseH, S?rumH. Transfer of multiple drug resistance plasmids between bacteria of diverse origins in natural microenvironments[J]. Appl Environ Microbiol, 1994,60(11):4015-4021.
[17]GaoP, MaoD, LuoY, et al. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment[J]. Water Res, 2012,46(7):2355-2364. DOI: 10.1016/j.watres.2012.02.004.
[18]LiuM, ZhangY, YangM, et al. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system[J]. Environ Sci Technol, 2012,46(14):7551-7557. DOI: 10.1021/es301145m.
[19]ZhuYG, JohnsonTA, SuJQ, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proc Natl Acad Sci U S A, 2013,110(9):3435-3440. DOI: 10.1073/pnas.1222743110.
[20]朱丹丹,遇晓杰,郑晓华,等.黑龙江省肉鸡养殖和生产加工环节中沙门菌耐药性分析[J].中华预防医学杂志,2016,50(9):833-835. DOI: 10.3760/cma.j.issn.0253-9624.2016.09.018.
[21]陈霞,车洁,赵晓菲,等. 483株肉鸡源大肠埃希菌和肺炎克雷伯菌中ISCR1及int1基因的流行及耐药情况[J].中华预防医学杂志,2017,51(10):886-889. DOI: 10.3760/cma.j.issn.0253-9624.2017.10.004.
[22]PengY, OuQ, LinD, et al. Metro system in Guangzhou as a hazardous reservoir of methicillin-resistant Staphylococci: findings from a point-prevalence molecular epidemiologic study[J]. Sci Rep, 2015,5:16087. DOI: 10.1038/srep16087.
[23]Vaglenov K. Survival and transmission of selected pathogens on airplane cabin surfaces and selection of phages specific for Campylobacter jejuni[EB/OL].[2017-01-02].https://etd.auburn.edu/handle/10415/4066.
[24]AllenHK, DonatoJ, WangHH, et al. Call of the wild: antibiotic resistance genes in natural environments[J]. Nat Rev Microbiol, 2010,8(4):251-259. DOI: 10.1038/nrmicro2312.
[25]HidronAI, EdwardsJR, PatelJ, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007[J]. Infect Control Hosp Epidemiol, 2008,29(11):996-1011. DOI: 10.1086/591861.
[26]OsaroEF, UfuomaIO, DorcasAO. Hospital indoor airborne microflora in private and government owned hospitals in Benin City, Nigeria[J]. WJMS, 2008, 3: 34-8.
[27]LambertA. MRSA: The Super Bug in Daily Practice[J]. Explore Connect Apply Advance, 2009, 4: 8-21.
[28]ZhengYH, ChenHX, YaoMS, et al. Bacterial pathogens were detected from human exhaled breath using a novel protocol[J]. J Aerosol Sci, 2017. DOI: 10.1016/j.jaerosci.2017.12.009.
[29]LingAL, PaceNR, HernandezMT, et al. Tetracycline resistance and Class 1 integron genes associated with indoor and outdoor aerosols[J]. Environ Sci Technol, 2013,47(9):4046-4052. DOI: 10.1021/es400238g.
[30]ZhuYG, GillingsM, SimonetP, et al. Microbial mass movements[J]. Science, 2017,357(6356):1099-1100. DOI: 10.1126/science.aao3007.
[31]World Health Organization. United Nations high-level meeting on antimicrobial resistance[EB/OL].[2017-01-01].http://www.who.int/antimicrobial-resistance/events/UNGA-meeting-amr-sept2016/en/.
[32]DeLeon-RodriguezN, LathemTL, Rodriguez-RLM, et al. Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications[J]. Proc Natl Acad Sci U S A, 2013,110(7):2575-2580.DOI: 10.1073/pnas.1212089110.
[33]SmetsW, MorettiS, DenysS, et al. Airborne bacteria in the atmosphere: Presence, purpose, and potential[J]. Atmos Environ, 2016,139: 214-221. DOI: org/10.1016/j.atmosenv.2016.05.038.
[34]GilchristMJ, GrekoC, WallingaDB, et al. The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance[J]. Environ Health Perspect, 2007,115(2):313-316. DOI: 10.1289/ehp.8837.
[35]ZhangQQ, YingGG, PanCG, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environ Sci Technol, 2015,49(11):6772-6782. DOI: 10.1021/acs.est.5b00729.
[36]FDA. In Department of Health and Human Services, P. H. S., Food and Drug Administration, Center for Drug Evaluation and Research, Office of Surveillance and Epidemiology[EB/OL].[2017-01-02]. http://www.fda.gov/downloads/Drugs/DrugSafety/InformationbyDrugClass/UCM319435.pdf.
[37]FDA. In Food and Drug Administration, Department of Health and Human Services: USA[EB/OL].[2017-01-02].http://www.fda.gov/downloads/forindustry/userfees/animaldruguserfeeactadufa/ucm416983.pdf.
[38]ChapinA, RuleA, GibsonK, et al. Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation[J]. Environ Health Perspect, 2005,113(2):137-142.
[39]SapkotaAR, OjoKK, RobertsMC, et al. Antibiotic resistance genes in multidrug-resistant Enterococcus spp. and Streptococcus spp. recovered from the indoor air of a large-scale swine-feeding operation[J]. Lett Appl Microbiol, 2006,43(5):534-540. DOI: 10.1111/j.1472-765X.2006.01996.x.
[40]BrooksJP, McLaughlinMR, SchefflerB, et al. Microbial and antibiotic resistant constituents associated with biological aerosols and poultry litter within a commercial poultry house[J]. Sci Total Environ, 2010,408(20):4770-4777. DOI: 10.1016/j.scitotenv.2010.06.038.
[41]LiuD, ChaiT, XiaX, et al. Formation and transmission of Staphylococcus aureus (including MRSA) aerosols carrying antibiotic-resistant genes in a poultry farming environment[J]. Sci Total Environ, 2012,426:139-145. DOI: 10.1016/j.scitotenv.2012.03.060.
[42]FrieseA, SchulzJ, HoehleL, et al. Occurrence of MRSA in air and housing environment of pig barns[J]. Vet Microbiol, 2012,158(1-2):129-135. DOI: 10.1016/j.vetmic.2012.01.019.
[43]LaubeH, FrieseA, vonSC, et al. Transmission of ESBL/AmpC-producing Escherichia coli from broiler chicken farms to surrounding areas[J]. Vet Microbiol, 2014,172(3-4):519-527. DOI: 10.1016/j.vetmic.2014.06.008.
[44]Navajas-BenitoEV, AlonsoCA, SanzS, et al. Molecular characterization of antibiotic resistance in Escherichia coli strains from a dairy cattle farm and its surroundings[J]. J Sci Food Agric, 2017,97(1):362-365. DOI: 10.1002/jsfa.7709.
[45]FergusonDD, SmithTC, HansonBM, et al. Detection of Airborne Methicillin-Resistant Staphylococcus aureus Inside and Downwind of a Swine Building, and in Animal Feed: Potential Occupational, Animal Health, and Environmental Implications[J]. J Agromedicine, 2016,21(2):149-153. DOI: 10.1080/1059924X.2016.1142917.
[46]GaoM, JiaR, QiuT, et al. Size-related bacterial diversity and tetracycline resistance gene abundance in the air of concentrated poultry feeding operations[J]. Environ Pollut, 2017,220(Pt B):1342-1348. DOI: 10.1016/j.envpol.2016.10.101.
[47]NovoA, ManaiaCM. Factors influencing antibiotic resistance burden in municipal wastewater treatment plants[J]. Appl Microbiol Biotechnol, 2010,87(3):1157-1166. DOI: 10.1007/s00253-010-2583-6.
[48]BrezaborutaB, PaluszakZ. Occurrence of antibiotic resistant staphylococci in the atmospheric air at a sewage treatment plant[J]. Medycyna Weterynaryjna, 2007, 63(6): 717-720.
[49]LiJ, ZhouL, ZhangX, et al. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant[J]. Atmos Environ, 2015,124: 404-412. DOI: org/10.1016/j.atmosenv.2015.06.030.
[50]高新磊,邵明非,贺小萌,等.污水处理厂空气介质抗生素抗性基因的分布[J].生态毒理学报,2015,10(5):89-94. DOI: 10.7524/AJE.1673-5897.20150528006.
[51]LaiCY, WuNX, KuoAR, et al. 0118 Sampling evaluation of bioaerosol and antibiotic-resistant characteristics in intensive care unit[J].BMJ,2017,74:A34.DIO:org/10.1136/oemed-2017-104636.92.
[52]ShamsizadehZ, NikaeenM, NasrEB, et al. Detection of antibiotic resistant Acinetobacter baumannii in various hospital environments: potential sources for transmission of Acinetobacter infections[J]. Environ Health Prev Med, 2017,22(1):44. DOI: 10.1186/s12199-017-0653-4.
[53]邱玉玉,李晓霞,于爱莲,等.医院内气载耐甲氧西林金黄葡萄球菌(MRSA)耐药性及耐药基因分析[J].中国病原生物学杂志,2014,9(1):27-32.
[54]SolomonFB, WadiloFW, ArotaAA, et al. Antibiotic resistant airborne bacteria and their multidrug resistance pattern at University teaching referral Hospital in South Ethiopia[J]. Ann Clin Microbiol Antimicrob, 2017,16(1):29. DOI: 10.1186/s12941-017-0204-2.
[55]RoghmannMC, JohnsonJK, SorkinJD, et al. Transmission of Methicillin-Resistant Staphylococcus aureus (MRSA) to Healthcare Worker Gowns and Gloves During Care of Nursing Home Residents[J]. Infect Control Hosp Epidemiol, 2015,36(9):1050-1057. DOI: 10.1017/ice.2015.119.
[56]BoswellTC, FoxPC. Reduction in MRSA environmental contamination with a portable HEPA-filtration unit[J]. J Hosp Infect, 2006,63(1):47-54. DOI: 10.1016/j.jhin.2005.11.011.
[57]KowalskiWJ. Air-treatment systems for controlling hospital-acquired infcetions[J]. HPAC Eng, 2007, 79(1): 28-48. DOI:10.1016/j.suc.2011.11.003.
[58]BosME, VerstappenKM, van CleefBA, et al. Transmission through air as a possible route of exposure for MRSA[J]. J Expo Sci Environ Epidemiol, 2016,26(3):263-269. DOI: 10.1038/jes.2014.85.
[59]SchulzJ, FrieseA, KleesS, et al. Longitudinal study of the contamination of air and of soil surfaces in the vicinity of pig barns by livestock-associated methicillin-resistant Staphylococcus aureus[J]. Appl Environ Microbiol, 2012,78(16):5666-5671. DOI: 10.1128/AEM.00550-12.
[60]MasclauxFG, SakwinskaO, CharrièreN, et al. Concentration of airborne Staphylococcus aureus (MRSA and MSSA), total bacteria, and endotoxins in pig farms[J]. Ann Occup Hyg, 2013,57(5):550-557. DOI: 10.1093/annhyg/mes098.
[61]Dorado-GarcíaA, BosME, GravelandH, et al. Risk factors for persistence of livestock-associated MRSA and environmental exposure in veal calf farmers and their family members: an observational longitudinal study[J]. BMJ Open, 2013,3(9):e003272. DOI: 10.1136/bmjopen-2013-003272.
[62]van RijenMM, BoschT, VerkadeEJ, et al. Livestock-associated MRSA carriage in patients without direct contact with livestock[J]. PLoS One, 2014,9(6):e100294. DOI: 10.1371/journal.pone.0100294.
[63]Angen?, FeldL, LarsenJ, et al. Transmission of Methicillin-Resistant Staphylococcus aureus to Human Volunteers Visiting a Swine Farm[J]. Appl Environ Microbiol, 2017,83(23):e01489-17.DOI: 10.1128/AEM.01489-17.
[64]GandolfiI, FranzettiA, BertoliniV, et al. Antibiotic resistance in bacteria associated with coarse atmospheric particulate matter in an urban area[J]. J Appl Microbiol, 2011,110(6):1612-1620. DOI: 10.1111/j.1365-2672.2011.05018.x.
[65]ZhouF, WangY. Characteristics of antibiotic resistance of airborne Staphylococcus isolated from metro stations[J]. Int J Environ Res Public Health, 2013,10(6):2412-2426. DOI: 10.3390/ijerph10062412.
[66]EcheverriapalenciaCM, ThulsirajV, TranN, et al. Disparate antibiotic resistance gene quantities revealed across 4 major cities in California: a survey in drinking water, air, and soil at 24 public parks[J]. ACS Omega, 2017, 2(5): 2255-2263.
[67]苏建强,黄福义,朱永官.环境抗生素抗性基因研究进展[J].生物多样性,2013,21(4):481-487. DOI: 10.3724/SP.J.1003.2013.07071.
[68]HuJ, ZhaoF, ZhangXX, et al. Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event[J]. Sci Total Environ, 2018, 615: 1332-1340.DOI: org/10.1016/j.scitotenv.2017.09.222.
[69]CaoC, JiangW, WangB, et al. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event[J]. Environ Sci Technol, 2014,48(3):1499-1507. DOI: 10.1021/es4048472.
[70]PatersonDL, van DuinD. China's antibiotic resistance problems[J]. Lancet Infect Dis, 2017,17(4):351-352. DOI: 10.1016/S1473-3099(17)30053-1.
[71]MartínezJL. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 2008,321(5887):365-367. DOI: 10.1126/science.1159483.
[72]ShenF, WangJ, XuZ, et al. Rapid flu diagnosis using silicon nanowire sensor[J]. Nano Lett, 2012,12(7):3722-3730. DOI: 10.1021/nl301516z.
[73]WangJ, ShenF, WangZ, et al. Point decoration of silicon nanowires: an approach toward single-molecule electrical detection[J]. Angew Chem Int Ed Engl, 2014,53(20):5038-5043. DOI: 10.1002/anie.201309438.
[74]LingLL, SchneiderT, PeoplesAJ, et al. A new antibiotic kills pathogens without detectable resistance[J]. Nature, 2015,517(7535):455-459. DOI: 10.1038/nature14098.
[75]García-FernándezE, KochG, WagnerRM, et al. Membrane Microdomain Disassembly Inhibits MRSA Antibiotic Resistance[J]. Cell, 2017,171(6):1354-1367.e20. DOI: 10.1016/j.cell.2017.10.012.